
www.manaraa.com

www.manaraa.com

Software Engineering
for Manufacturing
Systems

www.manaraa.com

IFIP - The International Federation for Information Processing

IFIP was founded in 1960 under the auspices of UNESCO, following the First World
Computer Congress held in Paris the previous year. An umbrella organization for societies
working in information processing, IFIP's aim is two-fold: to support information processing
within its member countries and to encourage technology transfer to developing nations. As
its mission statement clearly states,

IFIP's mission is to be the leading, truly international, apolitical organization which
encourages and assists in the development, exploitation and application of information
technology for the benefit of all people.

IFIP is a non-profitmaking organization, run almost solely by 2500 volunteers. It operates
through a number of technical committees, which organize events and publications. IFIP's
events range from an international congress to local seminars, but the most important are:

• the IFIP World Computer Congress, held every second year;
• open conferences;
• working conferences.

The flagship event is the IFIP World Computer Congress, at which both invited and
contributed papers are presented. Contributed papers are rigorously refereed and the rejection
rate is high.

As with the Congress, participation in the open conferences is open to all and papers may
be invited or submitted. Again, submitted papers are stringently refereed.

The working conferences are structured differently. They are usually run by a working
group and attendance is small and by invitation only. Their purpose is to create an atmosphere
conducive to innovation and development. Refereeing is less rigorous and papers are
subjected to extensive group discussion.

Publications arising from IFIP events vary. The papers presented at the IFIP World
Computer Congress and at open conferences are published as conference proceedings, while
the results of the working conferences are often published as collections of selected and
edited papers.

Any national society whose primary activity is in information may apply to become a full
member of IFIP, although full membership is restricted to one society per country. Full
members are entitled to vote at the annual General Assembly, National societies preferring a
less committed involvement may apply for associate or corresponding membership. Associate
members enjoy the same benefits as full members, but without voting rights. Corresponding
members are not represented in IFIP bodies. Affiliated membership is open to non-national
societies, and individual and honorary membership schemes are also offered.

www.manaraa.com

Software Engineering
for Manufacturing
Systems
Methods and CASE tools

IFIP TC5 international conference on
Software Engineering for Manufacturing Systems,
28 - 29 March 1996, Stuttgart, Germany

Edited by

Alfred Storr
University of Stuttgart
Germany

and

Dennis Jarvis
CSIRO Division of Manufacturing Technology
Australia

IUIII SPRINGER-SCIENCE+BUSINESS MEDIA, B.V.

www.manaraa.com

First edition 1996

© 1996 Springer Science+Business Media Dordrecht

Originally published by Chapman & Hall in 1996
Softcover reprint of the hardcover 1st edition 1996

ISBN 978-1-4757-6540-3 ISBN 978-0-387-35060-8 (eBook)
DOI 10.1007/978-0-387-35060-8

Apart from any fair dealing for the purposes of research or private study, or criticism or
review, as pennitted under the UK Copyright Designs and Patents Act, 1988, this publication
may not be reproduced, stored, or transmitted, in any fonn or by any means, without the prior
pennission in writing of the publishers, or in the case of reprographic reproduction only in
accordance with the tenns of the licences issued by the Copyright Licensing Agency in the
UK, or in accordance with the tenns of licences issued by the appropriate Reproduction
Rights Organization outside the UK. Enquiries concerning reproduction outside the tenns
stated here should be sent to the publishers at the London address printed on this page.

The publisher makes no representalion, express or implied, with regard to the accuracy of
the infonnation contained in this book and cannot accept any legal responsibility or liability
for any errors or omissions that may be made.

A catalogue record for this book is available from the British Library

@ Printed on permanent acid-free text paper. manufactured in accordance with
ANSIINISO Z39.48-1992 and ANSUNISO Z39.48-1984 (Permanence of Paper).

www.manaraa.com

2

3

4

5

6

7

8

9

10

11

12

CONTENTS

Software engineering for control technology - definitions and requirements
A. Storr

Life cycle support for PLC controlled manufacturing systems
J. Jarvis and D. Jarvis

State diagrams: a new programming method for programmable logic controllers
H.-P. Otto and C. Rath

Applying simulation modeling techniques for the design and assessment of
control software
II Astinov and N. Todorov

A CP-net approach to control logic engineering
M. Farrington and J. Billington

Modeling and simulation of combined discrete event-continuous systems
using DEVS formalism and object-oriented paradigm
M. Teggar and R. Soenen

Principles of CASE tool design for automation control
W Brendel

VPLC - a CASE tool for the virtual programming. simulation and diagnosis
of PLC software
D. Spath, P. Cuinand, M. Lanza, U. Osmers

ASPECT - a CASE tool for control functions originating from
mechanical layout
T. Bralldl, R. Lutz, J. Reichenbiicher

Case tools for flexibile manufacturing systems
M. Weck, J. Friedrich, Th. Koch, R. Langen

An environment and algorithm for FMS controller testing
Z. Deng. Z. Bi, Y. Zhu

Reusability of function-oriented and object-oriented master control software
J. Uhl, J. Driller

13 A reusable software artifact library system as the core of a reuse-oriented
software enterprise
C. Jacucci, E. Mambella, C. Succi, C. Uhrik, M. Ronchetti, A. Lo Sur do,
S. Doublait, A. Valerio

14 Software design practice using two SCADA software packages
K.P. Basse, C.K. Christensen, P.K. Frederiksen

15 GENIUS: a generator for graphical user interfaces
H.-J. Bullillger, K.-P. Fiihllrich, A. Weisbecker

Index of contributors

Keyword index

14

27

38

46

58

71

84

95

107

123

139

153

168

181

197

199

www.manaraa.com

1

Software Engineering for Control Techno­
logy - Definitions and Requirements

Storr, A.
Prof Dr.-Ing.
Institut fur Steuerungstechnik der Werkzeugmaschinen und
Fertigungseinrichtungen, Seidenstr. 36, 70174 Stuttgart/Germany
Tel: 0711/121-2420 Fax: 0711/121-2408

Abstract
Software for control technology is a significant part of a machine. The necessity of applying
systematically procedures and methods for the development of control software is
emphasised. The use of CASE tools and the specification of reusable software modules can
increase the productivity. When selecting the methods and procedures, various constraints
have to be considered. The selection is influenced by the hierarchical level of the control
architecture, the kind of control function that is to be implemented and the required quality
features. An important basic design method is the decomposition of control software
according to the decomposition of hardware features in mechanical engineering. This will
lead to an object-oriented structure. Additionally, using the description method of the state
graph, the reuse of control software is supported.

Keywords
Structures and demands of control technology; software engineering procedures and methods;
CASE (computer-aided software engineering) tools

www.manaraa.com

2 Software Engineering for Manufacturing Systems

1 INTRODUCTION

Nowadays, the term 'software crisis' is often heard. What is generally implied is that there is a
shortage of software engineers. The outcome is that engineer-like systematical procedures and
methods are often not applied to software development and especially not to software design.
The significance of software as a time and cost factor as well as a product and manufacturing
component and consequently as machine element has not yet been completely rerognized.

1. Software development is differentiated from the software application cycle. Application
includes also maintenance and service i. e. further development. Experience has shown
that the expenditure concerning the maintenance can be higher than that concerning the
software engineering.

2. The engineering cycle consists of different actions. The sequence of these actions reflects
a systematical process or procedure. It is important that much time is dedicated to the
"early" actions and that they are characterized by thorough and extensive analyses.

3. Furthermore, the figure illustrates that errors often occur relatively early in the process but
are usually discovered late. This results in cost-intensive corrections.

Fig. 1 shows some features of software development.

~ 01 dewiIoDmaI1I ~ 01 00If1I1b1

... • + m 30% ~ 30% I!l 15-~% ~ 15-20 % ~ 5%
P_anaIysIs

and",:::,~ Des9I knpIemerdaIion Test Conwnissioni1g U1iizatJon

Resouf08 plaMing System design PIOgIWMIIng ProgrwnleSl .t.ccepOOal MdlIanatlC<!
(~ Cocilg Systemlll$l - and
-) seMce

F~ ktegrdonlesl
ProjecllJllde .,.. CotrfOI*'I design

P-
(sInICln. daIa,

spocificatlons
prncoclns)

Error --;;a;;;y 00 II Error rettN8f'/ 58'1. I
r Error m. 64 'lI. II Em>< raIe 36 'lI.

CosIs 0I4Iiri1a1i1g f (reUied 10 Ihe phases 01 c:cdng)

0.2 OJ; 1 2 5 10 ·20

-.
~ J:..--- ~:,,?--~r:--~ ,""",tor :=

40% 01 procldonCOS1S 20'10 01 prod. *\$ 40 'lI.0I pn>clICIIor1 COS1S 1rin._01~

Fig. 1: Phases of software engineering, time and cost (according to Hering and others)
(104348)

www.manaraa.com

Software engineering for control technology 3

The figure does not explicitly demonstrate the necessity of re-usable software and the
resulting advantages as, for example, cost reduction and a reduced number of errors.
Furthermore, systematical engineer-like software development requires methods e.g. for
design modelling, in addition to the above mentioned process. CASE (Computer Aided
Software Engineering) tools - are based on procedures and methods (fig. 2). The development
and the application of function-specific CASE tools is required urgently.

(~ Engineering J
'------'

~qect octriristraioo
qJality~

rep;ns
general dfioo setVioos

- ---------,.

~a b Tools
- ~

A B ~ c ct ~
rUes ~ rdaicns fa- ~ ..,
~em~ia1 ~

SLW01 d the sdtware
deveIqJrrert

Fig. 2: Components of software engineering (104 258)

2 DEFINITIONS

2.1 Software Engineering - Software Technology

Presently both terms are used. Software engineering is according. to IEEE "the systematic
approach to the development, operation, maintenance and retirement of software". According
to Fig. 3, software engineering is principle-oriented, whereas software technology is
understood as application-oriented software engineering. Here it is clearly seen that software
technology is, to a high degree, an engineering discipline and serves for the systematical
production of software. In this paper, software design in regard to the application "control
technology" stands in the forefront.

www.manaraa.com

4 Software Engineering for Manufacturing Systems

tdistic view
integairYJ irtoodial

neenng

prird~EHlI'iEned
generally ~ia:tie
persco-irdeper Dlrt

instlU'l13lt view
ro irtoodial

J)'OCtioo ct scttv.ere d3ve1cp­
rrert in thefaelrtn
feecm::k from irdJsby

aTJiBsis CIl theay

little feecm::k

I1'BIIllc:S, hrdirYJ
tEdTicai ~Eml wth
scttv.are<oTpcn
poJJXlle<lriooted

I ricmatics = Bgreer scien:e fer the desigl
ct ci3Ia processirYJ S)'StEml

Sf-;tEmllical rrettms fer the
~ ct scttv.ere praLds

@) ISW'!15 Transdsci~irary insteal ct interdsci~irary

Fig. 3: Comparison software technology and software engineering (acc. to Gohner)(l04 323)

2.2 Activities and Methods

Methods can support the execution of single or multiple tasks. When supporting multiple
tasks, a method is comprehensive and continuous. Fig. 4 compares methods according to the
mentioned differentiation. Furthermore, function-, data- and object-oriented methods are
distinguished. It is important that a method is supported by a graphically describing or
representation function. In Fig. 5 additional methods and such functions are listed. Both
figures show clearly the problems with the selection of methods, especially since these do not
cover the broad range of requirements. They must be assessed by their performance in regard
to the application area - in our case control technology. A single method is not sufficient, but,
for example, a data-oriented and a function-oriented method have to be combined.

www.manaraa.com

Software engineering for control technology

Activity- I
comprehen- I
siva I

Activity­
oriented I 1 slJuClll'ed progr. 1

Fig. 4: Methods for software engineering (306 518)

Description methods Abbr. Standards Aulhors
Type

FO DO

Decisiontable ET DIN 66241 - •
Programloodlart PAP D1NII6!JOI - • --- NS DIN 66261 • -sIrucIogIams Nassi&S'meiderman

_a1hn:tion
I~- HF - - • - PC • -
Structured Analysis SA Ross, Yourdon. Constantine, • -
SA-RealrllTl8 SMlT

De Marco, Gane & Sarson.
W8Id & Malor • -

and
Oes;gn T echnque SAOT Ross • -
S_ee,;gn SO - Yourdon, Constantine, Myers • ·
Specification and
Oesai"","~ SOl - • ·

Petri's networks PN . Petri •
State graphs ZG • -
Sru:tu"ed c:onl"oI doo:ription SR • -
Enli\yReIa~ ER - Cadd. Chen. Marlin •
Jackson struct. progrc.rwning JSP Jackson • •
DatafloM:t\art OFP 01N66001 • •
Design after Eiffel EiIfeI - ·
~escription after
Coad Yourdon Coad. Yourdoo

Ooscription-- - Booch - -
OescriptionafterSh Shlaer,MeIor -
MeIor

FO... function-orienled 00 ... object-orienled • yes
® ISW '96 00 ... data-oriented '"

Fig. 5: Description methods (104 214)

DO

-

-
-
-
-
-
-
·

·

•
-

•
•
• •

IocUI point>:

D Il.ndicJn. -
O~· -

5

www.manaraa.com

6 Software Engineering for Manufacturing Systems

2.3 Decomposition

Decomposition - whether it be top down or bottom up - leads to modularity and hierarchy of
systems. It is a basic design method and has for a long time been applied to hardware features
in mechanical engineering. The objective is the definition of control functions in regard to this
decomposition. This results in a communication basis for various departments of an
enterprise, e.g. for mechanical and electrical design and software development. Sometimes
the term machining objects is introduced. They represent an integration of a mechanical
function unit and software i. e. control functions . Re-usability is the goal and thus
configurability of software becomes more and more important.

O::rrpE.te s,GEm rraTire too

I Sh>y.itEm feBi t.rit

I s.m,&Em min~

C> ~ too hirdil'Q

I FG ortUCI'tOO rrEgJZire

FGtOO~

I~ krgtldreI tr.Mj

~ \aenlItrM ~ f1JeNU'1I
-

~ 1~9 9 - -((((
FE ... "rdic~llrit
FG ... I\rdicn ~

Fig. 6: Function-oriented structuring of a machine tool (301 104)

3 DEMANDS ON SOFTWARE DEVELOPMENT

A distinction has to be made between the application-related demands in the field "control
technology" and general demands. Control technological tasks are split up in levels, according
to functional aspects (Fig. 7). This does not need to correspond with the decomposition of
devices; here different structures are possible.

This workshop attends to the levels E3".E5 and also to functions for the user interface. This is
shown in the figure as MMI (Man Machine Interface) in several levels. Systematically
generated user interfaces are based on the Seeheim model. This level structure model
distinguishes between presentation, interactive control, and an application model preparing
the data. The control functions of level E3".E5 contain different criteria (Fig. 8) which result
in different, graphic-oriented description or modelling methods. Unified modelling causes
problems. The figure illustrates the design bases related to levels and the used representation

www.manaraa.com

Software engineering for control technology 7

fOnTIs. Modeling or describing the control functions may be function-, data- or object­
oriented, further it can be directed at static or dynamic behavior.

cell
control
fi.nctiQ'lS

mlChine
control
fi.nctions

single
fu1dions

r:rocess
IeYeI

E7 factory CXlI1IroI

I

E4 !

E3 ' L __

I
,

El l

Fig. 7: Hierarchical functional control architecture (50140/41)

_ J

Fig. 8 indicates, just like Fig. 5, that there is a problem in selecting and combining suitable
methods. However, it should not be denied that different methods may contain similar
elements, e.g. state transition diagrams coming from finite automatons. This has to be taken
into consideration when the selection takes place.

www.manaraa.com

8 Software Engineering for Manufacturing Systems

~
-

J Control methods Design Graphically Slworted
functions/data bases repleseIllations

-stat&'P~ cterges -stcteltralsitim dc:qc:m
rrester cmtrdIcelllevei (Z.B. PN, 93, B:xx:I'Hxrrp.)
~eveI E5 em 64) -if - thoo - relatims -decisioo tajes

-rrBtlerr"Sicai relaims

~ rmdlne cxrbd ·m,thellatical relaims '8 level (lrig;rorelJy, CG) .a

i
~eveI E3, e.g. I'C) -dCSEd Icq> cxrbd ~s ~ockdagcm;

rmdlne cxrbd -loge relatia1s (Bcde) -Iadb dagaT\ oor1roI system

level .gaedages Itrdim dag .

Oeva 83, e.g. A..C) -sEIQJElrtiai q;eralims -staleltralsitim dagcm
-sEIQJElrtiai Itrdim d1arts

~
a:rtrd levels -data stndlres -Entity-relatimslip-mxlel
83 ... E5 (ERM)

00 ... dffEJ"Ertial E!p'!Iim ffi ... S1aIe gap-s PN ... Pari's reIwxks

Fig. 8: Description methods for control function design (410 124)

1 reusabl
3 • design

Code

use of
Very High Level Languages
(VHLl)

impoving the functional ! 2
decomposition
of systems

;-__ application of
software engineering

use of new
software tools

improvement of
• working cycles
• procedures
• environment

Fig. 9: Empirical analysis of the attempts made to solve the software crisis (according to
Matsumoto) (104 217)

General requirements - resulting from the already mentioned problems - can be summarized
in three focal points (Fig. 9):

www.manaraa.com

Software engineering for control technology 9

1. Improvement and application of methods which result in so-called CASE tools;

2. Improved functional structuring of systems that is also called decomposition. In the field
"control technology" this can be corresponding to the physical view at a machine and

3. Reusability of software, for example, by means of adaptability and configurability.

In fig. 10 the reusability of software is also a quality feature of software. Altogether,
systematical procedures, methods and CASE tools should help to develop high-quality
software. This results in a systematic software design, for which some simple examples will
be presented in the following chapter.

reliablity flrdicn
(safety) fufilrrert
rt:b.Jstness

LSer­

frierd­
liness
(ergnr
rrics)

Fig. 10: Quality features of software (30 I 51)

tEScOlity

4 CONCEPTS FOR SYSTEMATIC DESIGN

rom-
pe'lensi­
Illity

ctI:rge­
<Dlity,
elden­
silliity

Systematic design has to comply with the generation, the re-usability of software as well as
with an interdisciplinary comprehensibility of the design basis. Using the example of a
feeding device (fig. 11) as can be found in a transfer line or in a transportation unit, the
modelling with state graphs will be demonstrated. The decomposition is illustrated by this
figure.

www.manaraa.com

10 Software Ellgineering for Manufacturing Systems

feedrg
d:Moo

Fig. 11: Hardware decomposition of a feeding device (104 325)

The following picture illustrates the synchronisation of process sequences and function units
by means of orders and acknowledgements.

1. defirirg stales
inlhe~

2. arnedirg orders
ardacm:Jw.
I~ I a Its to ele­
rrertary~

sequerce ~ feedrg device

elerrerialy ~
liftjrg~orm

Fig. 12: Synchronisation offunction group and function units (104 327)

After defining the entire description, the automized generation of the code may be done by a
compiler. One example is the C code that is processed by modern controllers. Continuance up
to the code is hereby achieved. Concerning the generation of the code for PLC, the conversion
into the programming language of DIN IEC 1131-3 is most apt. State graphs may, as the
examples proved, be called object-based because function units or sequences represent an
object. Machine objects with the feature "reusability" can thus be defined.

www.manaraa.com

Software engineering for control technology 11

Basic software structure
Conventional Decentralized

.. '

t,

Events, data Orders, data

Fig, 13: Software structure of conventional and decentralized structured object-oriented
production management systems (104 33 I)

A second example refers to the master control (fig. 7 and level E4 ... ES). Contemporary master
controls consist of function-oriented software modules (fig. 13). The migration from a
function-oriented to an object-oriented structure can be seen, with the physical object view
becoming evident. The reusability and systematic design are improved considerably. Object­
oriented modeling e. g. according to Booch, and programming s.uPport the systematic design
by means of objects as a basis. Elements of the Booch notation are state transition diagrams
related to state graphs.

Hereby the close relationship of methods for modelling various control functions of different
levels becomes evident. The same applies to functions for the user interface.

5 SUMMARY

Concepts for computer-aided systematic design of control software and the reasons why they
are so necessary were presented. Initial steps for the implementation of CASE tools were
already taken in close cooperation of industry and university. The joint research work is to be
continued in order to computer-aided design and generation of software by means of
engineering. The demands on the different control levels must be considered as well as the
computer-aided configuration of reusable modules (with classification features) and complete
control systems. Furthermore, it has to be taken into account that software and information
systems should contain more and more supporting elements, for example, in the field of
diagnosis and if manufacturing alternatives are applicable. In addition they should be able to
absorb experience and know-how of the user and to make it available if needed.

www.manaraa.com

12 Software Engineering for Manufacturing Systems

Organisational measurements for the planning of time, cost and personell with software
development were not taken into account. These are necessary on top of the technical
requirements mntioned in this paper, in order to execute an software development effectively.

6 REFERENCES

Ludewig, J.

Davis, A. M.

DeMarco, T.

Ward, P.T.

Mellor, S.J.

Chen, P.P.

Booch,G.

Rumbaugh, J.

Pritschow, G. u.a.

Pritschow, G. u.a.

Storr, A. u.a.

Fleckenstein, J.

Software Engineering und CASE-Begriffserklarungen und

Standortbestimmung. it 33 (1191) H. 3., S. 112 ... 120.

Software Requirements. New Jersey: Prentice Hall 1990.

Structured Analysis and System Specification. New York: Y ourdon

Press 1978.

Structured Development for Real-Time Systems. New York:

Yourdon Press 1985.

The Entitiy-Relationship Method - Towards a Unified View of Data.

ACM Transactions on Database Systems, Vol. 1, No.1 (March

1976), S. 9 ... 36.

Booch Method of Object Analysis and Design. Santa Clara (CA):

Rational 1992.

Object-Oriented Modeling and Design. Englewood Cliffs, New

Jersey: Prentice Hall 1991.

Studie tiber die Auswirkung von einheitlichen Entwurfs- und

Entwicklungswerkzeugen zur Softwareentwicklung und

durchgangigen Softwaredokumentation fUr eine Fertigungszelle.

Frankfurt: VDW-Forsch.ber. 1012, 1991.

Pflichtenheft und Bewertung von CASE-Tools zur durchgangigen

Software-Erstellung und Software-Doku-mentation. Frankfurt:

VDW-Forsch.ber. 1013, 1993.

Simultan zur SPS-Software - Neue Ansatze zur effizienten SPS­

Programrnierung. ELEKTRONIK 43 (1994) 23, S. 124 ... 136.

Zustandsgraphen fUr SPS - Grafikunterstiitzte Programrnierung und

steuerungsunabhangige Darstellung. ISW 63. Berlin: Springer 1987.

www.manaraa.com

Brantner, K.

Siewert, U.

Pritschow, G.

Siewert, U.

Storr, A.

UbI,J.

7 BIOGRAPHY

Software engineering for control technology 13

Adaptierbares Leitsteuerungssystem fUr flexible Produktionssysteme.

ISW 96. Berlin: Springer 1993.

Systematische Erstellung adaptierbarer Leitsteuerungssoftware am

Beispiel der Durchsetzungsplanung. ISW 100. Berlin: Springer 1994.

Offene Systeme fUr die Automatisierung in der Produktion.

GMA (VDIIVDE-Gesellschaft MeB- und Automatisierungstechnik) -

KongreB'93 Automatisierungstechnik. Dresden, 20.9.1993.

Objektorientierte Leittechnik: neue Perspektiven und Losungen.

CIM-Management 11 (1995) I, S. 30 ... 34.

Prof. Storr is the deputy director of the Institute of Control Technology for Machine Tools
and Manufacturing Units at the University of Stuttgart. His main fields in research and
development work are master control systems, information systems and NC programming
systems, furthermore the automation of the technical information flow. These fields are
accompanied by systematic software engineering.

www.manaraa.com

2

Life Cycle Support for PLC Controlled
Manufacturing Systems.

Jacqueline Jarvisa and Dennis Jarvii
aUniversity of South Australia, School of Computer and Information
Science, The Levels, Sth. Aust., 5095, Australia. jacquie.jarvis@
unisa.edu.au
bCSIRO Division of Manufacturing Technology, P.O. Box 4, Woodville
Sth. Aust., 5011, Australia. dhj@adl.dmt.csiro.au

Abstract
Software support for PLC controlled manufacturing systems has focused primarily on the
design and production phases of the control system lifecycle - there is limited support for the
lifecycle of the manufacturing system itself. Also those phases of the system lifecycle after
system development are poorly supported because effective support tools for these phases need
to address both the control system and the manufacturing system. We believe that if a model of
the total system is constructed at an early stage in the lifecycle which captures both the behav­
iour of the control system and the behaviour of the manufacturing system then the opportunity
exists to develop a suite of model-based tools to support the lifecycle of a particular system
from design onwards. We have tested this hypothesis by developing a methodology to enable
models of PLC controlled manufacturing systems to be generated efficiently and constructing
model-based software to assist in maintenance, diagnosis and system migration activities. We
have also identified other activities within the lifecycle that would benefit from such software.
The software that we have developed is in support of a 700 i/o point, 3 station assembly line.

Keywords
programmable logic controllers, maintenance, model-based diagnosis

www.manaraa.com

Life cycle support for PLC controlled manufacturing systems 15

1 INTRODUCTION
In certain manufacturing sectors, such as the automobile and food processing industries, the
quest for automation and flexibility has resulted in extremely complex manufacturing systems,
which are typically controlled by Programmable Logic Controllers (PLCs). These systems
exhibit a lifecycle similar to that of conventional software systems, which involve the follow­
ing phases (Birrell and Ould, 1985):
• project inception
• system definition
• system design
• system production
• system acceptance
• maintenance
• obsolescence
Manufacturing systems differ from conventional software systems in that there are two sub­
systems to consider - the control system and the system being controlled (such as an assembly
line). The linkage between the two systems is provided by wiring diagrams which are main­
tained separately from the PLC program and the pneumatic and hydraulic circuit diagrams
which typically constitute the documentation for the system being controlled. This separation
makes system maintenance particularly difficult because in order to understand the behaviour
of the system one needs to understand how both sub-systems behave and how they interact
with each other. This problem is further compounded because the information that one has
access to is often inconsistent and incomplete. Inconsistencies often arise because the subsys­
tems and their linkages are maintained using separate systems. Incompleteness occurs because
typically not all the information required to understand the behaviour of the system (such as
the state behaviours and the initial states of entities in the manufacturing system) is explicitly
documented.

Our primary motivation was to develop an effective diagnostic system for an existing PLC
controlled assembly line. Diagnostic systems for PLC controlled manufacturing systems have
been developed using rule-based and other approaches (Myers and Davis, 1990; Milne et al,
1994; Wheeler and Rosetti, 1993; Day and Rostosky, 1994). However, their deployment in
systems of the complexity found in the automotive and food processing industries has been
extremely limited, as conventional rule-based approaches are unable to produce comprehen­
sive systems in reasonable time-frames (Cirocco et al, 1995). The underlying reason for this is
that rule-based diagnostic systems are constructed by associating a set of states with a set of
observed faults. This association is normally performed by people who have had extensive
experience with the underlying manufacturing system. Unfortunately, when dealing with com­
plex, one-off manufacturing systems, it becomes impossible for a single person (or even a
group of people) to experience a sufficiently wide range of fault states to generate a compre­
hensive diagnostic system. Furthermore, the knowledge acquisition task involved in the devel­
opment of such a system is extremely time consuming (and therefore expensive), thus
providing more disincentive.

www.manaraa.com

16 Software Engineering for Manufacturing Systems

It is our belief that a model-based approach offers a much more attractive path for the devel­
opment of comprehensive and timely diagnostic systems. In a model-based approach, one
would first construct a model of the manufacturing system. Reasoning strategies would then be
developed that enabled an association to be made dynamically between an observed fault state
and an underlying cause. As noted above, such a model would need to capture the behaviours
of both the control system and the system being controlled. Furthermore, we expect that such
models would prove to be extremely useful in other maintenance activities and in other phases
of the system lifecycle. We are unaware of any attempts to construct models of this kind,
although there has been some interest in representing existing control logic with alternative
representations in order to facilitate analysis of the control program. Representations that have
been used include AND I OR graphs (Cirocco et al, 1995; Day and Rostosky, 1994), Boolean
equations (Moon, 1994; Falcione and Krogh, 1993; Boullart, 1992) and logic networks (Asfahl
and Balagamwala, 1990). Wheeler and Rossetti (1993) constructed a semantic network repre­
sentation of a PLC-controlled spinning line in a nylon yarn factory for diagnostic purposes.
The semantic network acted as a repository for functional, behavioural, structural and heuristic
knowledge relating to the line. Of particular interest to us is that the behavioural knowledge
was generated automatically from the PLC programs. However, the outcome of this process
was not a dynamic model that could be executed, but rather a static representation with equip­
ment states represented explicitly as nodes in the semantic network.

The purpose of this paper is to demonstrate that behavioural models that encompass both
the control and manufacturing aspects of a PLC controlled manufacturing system can be effec­
tively generated and that such models can then be used to develop applications which are of
use in various stages of the system lifecycle. Our initial objective was to support activities in
the maintenance phase (in particular fault diagnosis), but we have also developed applications
which could support activities in the system design and system acceptance phases.

2 MODEL CONSTRUCTION

2.1 The Pilot System

The pilot system was a low-volume assembly line. It consists of 3 assembly stations (stations
10, 20 & 30) linked by a transfer line. Two types of product are assembled on the line - Style A
and Style B. The operations performed at each station are an alternating sequence of automatic
and manual steps. Automatic operation at a station is initiated by an operator (or operators)
depressing one or more sets of palm buttons. Those buttons remain depressed for the duration
of that step. The activities performed during automatic operation typically involve the opening
and closing of clamps. On completion of an automatic step (indicated by a lamp being illumi­
nated on the station control panel), the operator removes his or her hands from the palm but­
tons and initiates a sequence of manual activities. This may involve the fixing of components
to the sub-assembly, the loading of components, or perhaps removal of the sub-assembly from
the station using external lifting equipment.

www.manaraa.com

Life cycle support for PLC controlled manufacturing systems 17

When the assembly operations have been completed at a station, the operator needs to wait
until assembly has. been completed in the other stations. At that point, the transfer line is acti­
vated (by the operators at each station simultaneously depressing their palm buttons) and the
cycle begins again with a new sub-assembly. Note that the number of stages in a cycle depends
on the product being built.

2.2 The Model

A model of a PLC controlled manufacturing system, if it is to be used for fault diagnosis, will
need to simulate the following activities:

a. PLC operation
A PLC executes the algorithm described in Figure 1:

for (ever)

Read all inputs;

Evaluate the PLC program;

Set all outputs;

Figure 1 A simplification of the control loop typical of a PLC.

One loop is known as a scan. Our objective was not to emulate the detailed operation of the
PLC so that accurate scan times can be determined, but rather to simulate its input I output
behaviour. That is, having read all the PLC inputs, we need to determine what PLC outputs
should be set by evaluating a representation of the PLC program.
h. Manufacturing System Operation
The PLC controls a manufacturing system. We can view the manufacturing system as consist­
ing of 2 different entities:
1. Agents
2. Sensors
An agent is defined as a collection of electromechanical devices that can exist in one of several
states. State selection is controlled by one or more PLC outputs. One or more events in the
manufacturing process are associated with each agent state. As an example, agent SAV23 in
the pilot system consists of two solenoids, an air valve, a piston and 3 clamps. The agent has
two states designated SAV23A and SAV23B. In the first state, the clamps are open; in the sec­
ond state, the clamps are closed. Sensors enable us to determine whether a particular manufac-

www.manaraa.com

18 Software Engineering for Manufacturing Systems

turing event has occurred. Examples of sensors include limit switches, proximity switches and
palm buttons. These entities typically interact as shown in Figure 2:

Set a PLC output;

The agent changes state and associated manufacturing events occur;

/* eg clamp 123 closes */

if (there is a sensor for this event / state)

The new state is detected; /* eg by limit switch 456 */

The associated PLC input is set;

Figure 2 The sequence of events initiated by the setting of a PLC output.

Our primary interest is the causal relationships that exist between agent states and sensors.
We are not concerned with the detailed operation of the individual agents but rather their state
behaviour, as can be seen from the simulation trace illustrated in Figure 3:

Stage 1 Ready. Hands On - Clamp Body

Y527 = 1 -> <2,1>

Previous State

ST20 7A-A,7B-B LOCATOR UNCLAMP BOTH SIDES

X346 X345 X348 X347 X438 X437 -> OFF

Current State

ST20 7A-A,7B-B LOCATOR CLAMP BOTH SIDES

X403 X436 X435 -> ON

Y529 = 1 -> <2,1>

Previous State

ST20 7D-D,7F-F,7J-J LOCATOR UNCLAMP BOTH SIDES

X351 X350 X360 X359 X353 X352 -> OFF

Current State

ST20 7D-D,7F-F,7J-J LOCATOR CLAMP BOTH SIDES

X404 -> ON

www.manaraa.com

Life cycle support for PLC controlled manufacturing systems

Y548 = 1 -> <1,2>

Previous State

ST2 a OVERHEAD FRAME CLAMP

X482 X481 X486 X485 -> OFF

Current State

ST2 a OVERHEAD FRAME UNCLAMP

X484 X483 X488 X487 -> ON

Figure 3 Simulation trace for part of stage 1 for station 20.

19

Agents and sensors were implemented as finite state machines; agents change states when
the appropriate PLC outputs are fired. When an agent undergoes a state transition, sensors
associated with the previous state are deactivated, and those for the current state are activated.
The PLC program was represented as a sequence of AND I OR graphs (one per rung); rung
evaluation was viewed as a single-source shortest path problem for a graph with unweighted
edges' (Weiss, 1993).

3 APPLICATIONS
Our primary objective has been to develop applications in support of the maintenance phase of
the lifecycle presented in Section 1. However, in developing these applications, we have iden­
tified aspects of the system design and system acceptance phases which would benefit from
model based tools. In a related activity (Jarvis and Jarvis, 1996) we have investigated the feasi­
ibility of transforming PLC controlled manufacturing systems into distributed systems consist­
ing of intelligent agents known as holons. One can view this as either a design or maintenance
activity; we choose to view it as a maintenance activity.

3.1 Maintenance

Within the maintenance phase, we have developed tools to assist in system validation, fault
diagnosis and system redesign. We also believe that documentation based on a system model
would offer considerable advantages over existing approaches.
a. System Validation.
For each station, model validation proceeded in two phases. The outcome of Phase 1 was a
model which, when started from the initial standby state, achieved cycle completion. Further­
more, the model could be run for more than one cycle (for this to happen, the state on cycle

1. Our objective is to detennine whether a suitable path between the start node and the finish node exists, not to
calculate the shortest such path. Consequently, we can use a shortest path algorithm, but stop as soon as a suitable
path is found.

www.manaraa.com

20 Software Engineering for Manufacturing Systems

completion needs to be the standby state}. In Phase 2, a PLC memory image was captured at
completion of each stage of the station cycle and compared with the state predicted by the sim­
ulation. Much to our surprise, not only did these comparisons highlight further modifications
that needed to be made to our model, but they also identified several limit switches which had
failed in such a way that the station was still completing its cycle (and consequently mainte­
nance personnel were unaware of the problems). This was possible because of the way in
which the system was designed. If one inspects the pneumatic circuit diagrams, one will see
that in many cases, only one agent state (e.g. clamp open) is explicitly checked for with a limit
switch. If the PLC program then only checks to see whether that event has happened, and if the
limit switch associated with that event fails in the on position, PLC execution will continue as
normal and the station will cycle normally. (Note however, that if the clamp fails to operate
correctly for some reason, we have the potential for major damage to occur). A system for the
detection of such faults (which we called benign) was developed and installed.
h. Fault Diagnosis
In constructing our diagnosis system, we assumed that
• there will be a single point of failure
• the point of failure will be a sensor (typically a limit switch)
The justification for the first assumption is that independent multiple faults which all contrib­
ute to a line stoppage are unlikely to occur. The second assumption can be relaxed if required;
if it proves necessary we can induce faults in PLC outputs 1. Note that this would allow us to
diagnose multiple dependent faults; e.g. if a cylinder failed to advance, then all limit switches
associated with all clamp actions associated with cylinder advancement would be in error.

The conceptual strategy that we used for diagnosis is presented in Figure 4.

Capture the PLC state when an automatic step fails to complete

Determine the stage during which failure occurred

for (all possible faults in the station)

simulate the behaviour of the station with that fault induced

if (the simulation fails in the same stage as the physical system)

compare observed state and simulated state

if (observed state == simulated state)

report cause of fault and exit

report failure to identify cause of fault

Figure 4 Conceptual strategy for model-based fault diagnosis.

1. This was not done in the current version because maintenance personnel found fault-finding in this situation
relatively straightforward. Their major difficulty is in finding faults associated with a single PLC input.

www.manaraa.com

Life cycle support for PLC controlled manufacturing systems 21

In implementing this strategy, there are two major issues that need to be considered:
1. How do we determine the fault space?
2. How do we compare observed and simulated states?
The fault space for a particular station is the set of all possible faults that can occur. As we are
dealing with a system which changes with time, a faulty limit switch will be characterised not
only by its state (on or off) but also by the point in the cycle when the failure occurred. At first
glance, the size of the fault space I would suggest that the diagnostic strategy described above
would be infeasible. However, as one would expect, the fault space can be pruned significantly.
(Alternatively, degenerate fault states could be removed by inductive learning (Bratko et al,
1989)).

Comparison of observed and simulated fault states is not as complicated. The issue here is
"What is the minimum amount of information that will enable us to identify a simulated state
as being the same as the observed fault state?" We have chosen in the current implementation
to do the comparison on the basis of selected inputs2. This has worked well in practice,
although in general, a PLC state will be characterised by all its inputs, latched outputs and non­
volatile C memory locations.

The diagnostic system was validated by inducing faults during normal production and then
attempting to ascertain the cause of the resultant stoppage by using the diagnostic system. The
success rate during the validation and commissioning stages was -95%. It takes 20-40 seconds
to perform a diagnosis; the system is currently running on a dedicated Sun IPC configured with
8Mb of RAM.
c. System Redesign
While PLCs have played a major role in the implementation of cost-effective automation, the
style of programming that is required is not conducive to the development of modular control
systems. It is worth noting that complex manufacturing systems (such as assembly stations)
have a well defined hierarchical structure. However, it is difficult to construct PLC based con­
trol systems that reflect that structure. If one could do this, we believe that the verification and
maintenance tasks for such systems would be significantly reduced. This problem is recog­
nised by industry, and one solution that is emerging is to use separate PLCs for separate assem­
bly functions. However, this solution is only being used for new systems and the problem of
maintaining the integrity of the total manufacturing system still remains.

The concept of a holonic manufacturing system has recently emerged as a realistic candi­
date for the creation of the flexible and modular systems that the manufacturing sector will
increasingly require (Deen, 1993; McFarlane et al, 1995). Holonic manufacturing systems will
be constructed from entities known as holons, which will exhibit the dual characteristics of
autonomous behaviour and the ability to function cooperatively. As such, they are similar to
the multi-agent systems of distributed AI (Jennings, 1995). While holonic architectures offer
the potential for systems which exhibit improved flexibility, reconfigurability and fault toler-

1. For Station 20, there are approximately 17,000 points in the full fault space. This is the product of the number
of input points (210 for Station 20) and the number of scans in the cycle (75 for Style A, 88 for Style B).

2. Due to production pressures, maintenance personnel were unable to prepare a system which was free of benign
faults. Consequently, we chose to ignore those inputs which corresponded to benign faults.

www.manaraa.com

22 Software Engineering for Manufacturing Systems

ance, most manufacturers are unlikely to embrace this new technology if its adoption requires
them to discard their existing manufacturing and control systems. Manufacturers have an enor­
mous investment in existing control technology, and what is required is a methodology which
enables existing systems to be progressively evolved into holonic systems. We have demon­
strated that the first step in this process, namely the creation of skeletal holonic subsystems
which co-exist with conventional control systems is indeed feasible and that software can be
developed which will enable the holonic subsystems to be automatically generated from a
model of the existing manufacturing system (Jarvis and Jarvis, 1996). Note that we assume
that holons have already been identified and correspond to the agents and sensors in our exist­
ingmodel.

In the holonic model, the only entities that will appear are holons. The control function is
achieved by each holon maintaining knowledge of the states that it can adopt (e.g. clamp open,
clamp closed) and the preconditions for its state transitions to occur. Preconditions are speci­
fied in terms of holon states. In the current model, notification of state transitions is achieved
by a broadcast mechanism - when a holon changes state, all holons are notified. The key issue
in the conversion of the PLC-based model to a holonic model thus becomes the extraction of
preconditions for state transitions from the PLC-based model. The approach that we adopted
(Jarvis and Jarvis, 1996) involved the following steps:
• transformation of the PLC-based model into an equivalent model with PLC inputs replaced

by agent states.
• generation of a complete simulation trace for the agent state model
• extraction of the preconditions for every state transition from the simulation trace
• input the preconditions generated in the previous step into the holonic model and execute the

model.
The approach has been tested successfully on the pilot system. An agent state model for the
pilot system was generated, and preconditions were extracted for all state transitions. A
holonic model of a subsystem of one of the stations was then constructed using the IDPS dis­
tributed programming environmentl .

d. Documentation and User Training.
The model has been used by people unfamiliar with the the assembly line to gain an under­
standing of its operation. The usage of this capability has been limited because of the absence
of an appropriate user interface. If an interface was provided which enabled maintenance engi­
neers to interact with the model in an intuitive way (e.g. point and click on a ladder logic dia­
gram), users could interact with the system in a "what if?" mode. Thus, user-directed diagnosis
could be undertaken by inducing faults in the model and observing consequences. This mode
of interaction would also be extremely useful in enabling engineers to gain an understanding of
complex systems and to assess the impact of proposed changes to either the control system or
the manufacturing system. Note that if our model was augmented with timing information for

1. lOPS is a programming environment which supports the development of prototype lOPS-OS applications.
lOPS operates in a UNIX I TCPIIP environment. lOPS-OS (Seki et aI, 1991) is a distributed, fault tolerant oper­
ating system which was implemented using reliable broadcasting between objects.

www.manaraa.com

Life cycle support for PLC controlled manufacturing systems 23

the manufacturing events, the opportunity exists to explore the impact of control system modi­
fications on cycle time.

As discussed earlier, the construction of a complete manufacturing model requires informa­
tion to be extracted from several different sources. A consequence of this is that it is difficult to
ensure that the information contained in all the sources is correct and consistent. Furthermore,
we have highlighted through this exercise that the information which is normally maintained is
insufficient to construct an operational model of a manufacturing system. It is therefore attrac­
tive to contemplate using the manufacturing model as the primary form of documentation. In
this scenario, all information is held online and printed material (such as wiring diagrams) are
generated from the online database. Consequently, changes can be better controlled, as we can
now enforce a single entry point for system modifications.

3.2 System Acceptance

The system that we developed to detect benign faults, whilst deployed as a maintenance tool,
could be deployed during system acceptance to ensure that the actual behaviour of the system
corresponded to the "predicted" behaviour of the system.

3.3 System Design

During the course of the development and commissioning of the preceding applications, we
developed a number of tools to identify potential design limitations in the manufacturing sys­
tem and control system (e.g. limit switches which are only checked in one state, clamp posi­
tions which are not sensed, latches that don't latch, dependencies which could invalidate
concurrent activities etc.). We recognise that ifformaI modelling techniques were used, such as
Petri nets (Desrochers and Al-Jaar, 1995), process algebras (Milner, 1989) and temporal logics
(Clarke et ai, 1986), we could perform much more detailed and rigorous analyses of the system
behaviour.

Petri nets have long been advocated as an alternative to ladder logic for the description of
logic control systems. However, despite their advantages in terms of analysis and ability to
represent concurrency, industrial perception was that they were too difficult to use (Desrochers
and AI-Jaar, 1995). This led in 1977 to the development of GRAFCET, which is closely related
to a subset of Petri nets called condition / event nets. However, no analysis can be done using
GRAFCET, and place- and transition-invariants cannot be derived, which are essential for the
verification of models. Also constraints on GRAFCET's evolution rules reduce its modelling
power and applicability in applications which exhibit conflict, concurrency and asynchronous
operation. Design frameworks based on Petri nets continue to be proposed (Ferrarini and
Maffezzoni, 1993) but they have not as yet gained widespread acceptance. Frameworks based
on finite state automata are beginning to emerge (Brandin and Charbonnier, 1994). This
approach has the advantage that the concept of finite state machines is one which is well under­
stood by maintenance engineers. With both approaches, a major challenge is to develop

www.manaraa.com

24 Software Engineering for Manufacturing Systems

frameworks which can coexist with existing technology. In the short term, that may mean hav­
ing design tools which generate PLC code.

The extent to which formal techniques can be used for the analysis of existing PLC control­
led manufacturing systems is an issue that needs further investigation. In particular, the ability
to effectively generate alternative representations for existing systems needs to be addressed.
We have demonstrated through the creation of our holonic models that it is feasible to trans­
form the existing system representation into a finite-state representation. Other transformations
(to temporal logic (Moon, 1994) and to Sequential Function Charts (Falcione and Krogh,
1993» have been reported. In both cases, the starting point is a user-generated control specifi­
cation consisting of Boolean equations. Our experience with the maintenance procedures for
large, complex systems suggests that if we want such files to accurately represent the control
program, they must be generated automatically from the control program. Consequently, a key
component of our modelling methodology is software that parses ladder logic listing files and
produces AND I OR graphs. This software could be easily extended to generate Boolean equa­
tions and other representations as required.

Once an alternative representation has been constructed, one can then use analysis tools
appropriate for that representation. A problem here is that for large systems, the state space is
potentially enormous and analysis may become infeasible. A solution to this problem is to cre­
ate models with higher levels of abstraction. Coloured Petri nets (Jensen, 1992) provide such a
capability, as does the Circal process algebra (McCaskill and Milne, 1992). Unfortunately PLC
programs do not lend themselves to abstraction because they indicate a functional, rather than
a structural decomposition of a system. A much better starting point if abstraction is required is
provided by the holonic models described above.

4 CONCLUSION

We have developed a model of an existing PLC-controlled assembly line which incorporates
the behaviour of both the manufacturing system and the control system. This model was then
used to develop a collection of model-based applications to support the maintenance and
redesign of the assembly line. In the course of that work, we developed tools which would be
of use in the design and acceptance phases of PLC-controlled manufacturing systems. We have
also identified other applications which would benefit from the availability of behavioural
models or from formal models.

REFERENCES

Asfahl, R.C. and Balagamwala, A. (1990), Simlog: a Prolog Based Simulator for Industrial
Logic Control Systems. Computers and Industrial Engineering, 19, pp. 195-199.

Birrell, N.D. and Ould, M.A. (1994), A Practical Handbookfor Software Development, Cam­
bridge University Press.

www.manaraa.com

Life cycle support for PLC controlled manufacturing systems 25

Brandin, B. and Charbonnier, F. (1994), The Supervisory Control of the Automated Manufac­
turing System of the AlP, In Proc. of the 4th. International Conference on Computer Inte­
grated Manufacturing and Automation Technology, Troy New York, pp. 319-324.

Boullart, L. (1992), Using AI Formalisms in Programmable Logic Controllers. In Boullart, L.,
Krijgsman, A. and Vingerhoeds, R.A. (Eds.) Application of Artificial Intelligence in Proc­
ess Control, Pergamon Press, pp. 96-113.

Clarke, E.M., Emerson, E.A. and Sistla, A.P. (1986), Automatic Verification of Finite-State
Concurrent Systems Using Temporal Logic Specifications. ACM Transactions on Program­
ming Languages and Systems, 8, pp. 244-263.

Cirocco, L.R., Jarvis, D.H., Jarvis, J.H. and Ryan A. (1995), Simulation of a PLC Controlled
Assembly Station. Technical Report MTA 333, CSIRO Division of Manufacturing Technol­
ogy, Adelaide, South Australia.

Day, W.B. and Rostosky, M.J. (1994), Diagnostic Expert Systems for PLC Controlled Manu­
facturing Equipment Internationallournal ofCIM, 7, pp. 116-122.

Deen, S.M. (1993), Cooperation Issues in Holonic Manufacturing Systems. In Yoshikawa, H.
and Goosenaerts, J. (Eds.) Information Infrastructure Systems for Manufacturing (B-14),
Elsevier Science, pp. 401-412.

Desrochers, A.A. and Al-Jaar, R.Y. (1995), Applications of Petri Nets in Manufacturing Sys­
tems: Modeling, Control and Performance Analysis. IEEE Press.

Falcione, A. and Krogh, B. (1993), Design Recovery for Relay Ladder Logic. IEEE Control
Systems, 13, pp. 90-98.

Ferrarini, L. and Maffezzoni, C. (1993), Conceptual Framework for the Design of Logic Con­
trol.Intelligent Systems Engineering, 2, pp. 246-256

Jarvis, J.H. and Jarvis, D.H. (1996), A Strategy for Migration of a PLC-Controlled Manufac­
turing System to a Holonic Manufacturing System. In preparation.

Jennings, N.R. (1995), Controlling Cooperative Problem Solving in Industrial Multi-Agent
Systems Using Joint Intentions. Artificial Intelligence, 75, pp. 195-240.

Jensen, K. (1992), Coloured Petri Nets. Volume 1: Basic Concepts. Springer-Verlag.
McFarlane, D., Marett, B., Elsley, G. & Jarvis, D. (1995), Application of Holonic Methodolo­

gies to Problem Diagnosis in a Steel Rod Mill. In Proc. of the 25th. IEEE Conf. on Systems,
Man and Cybernetics, Vancouver, pp. 940-945.

McCaskill, G.A. and MIlne, G.J. (1992), Hardware Description and Verification Using the Cir­
cal System, Research Report HDV-24-92, University of Strathclyde, Department of Com­
puter Science, Glasgow, Scotland.

Milne, R., Nicol, C., Ghallab, L., Trave-Massuyes, L., Bousson, K., Dousson, C., Quevedo, J.,
Aguilar, J. and Guasch, A. (1994), TIGER: Real-Time Situation Assessment of Dynamic
Systems, Intelligent Systems Engineering, 3, pp. 103-124.

Milner, R. (1989), Communication and Concurrency, Prentice Hall International Series in
Computer Science.

Moon, I. (1994), Modeling Programmable Logic Controllers for Logic Verification. IEEE
Control Systems, 14, pp. 53-59.

www.manaraa.com

26 Software Engineering for Manufacturing Systems

Myers, D.R., Davis, J.E and Hurley, C.E. (1990), A Knowledge Based Approach to Malfunc­
tion Diagnosis of Discrete Operations Involving Programmable Logic Controllers. In Proc.
of the 1990 American Control Conference, San Diego, pp. 1974-1979.

Seki, T., Hasegawa, T., Okataku, Y. and Tamura, S. (1991), An Operating System for the Intel­
lectual Distributed Processing System - An Object Oriented Approach Based on Broadcast
Communication, Journal of Information Processing, 14, pp. 405-413.

Weiss, M.A. (1993), Data Structures and Algorithm Analysis in C. Benjamin I Cummings.
Wheeler, G. and Rossetti, V. (1993), Model Based Diagnosis in a PLC controlled Factory. In

Proc. of Object Oriented Software, London.

BIOGRAPHY

Jacqueline Jarvis is a Lecturer in the School of Computer and Information Science at the Uni­
versty of South Australia. She holds a B.Sc. degree from the Flinders University of South Aus­
tralia, and an MSc. in Software Development and Analysis from Heriot-Watt University. Her
current research interest is model-based fault diagnosis.

Dennis Jarvis is a Principal Research Scientist at the CSIRO Division of Manufacturing
Technology in Adelaide, South Australia. He holds a B.Sc. degree from the Flinders University
of South Australia, and a Dip. Compo Sci. and a Ph.D. degree from the University of Queens­
land. His current research interests are in cellular manufacturing, enterprise modelling and
model-based fault diagnosis. He is a member of AAAI.

www.manaraa.com

3

State Diagrams
A New Programming Method for
Programmable Logic Controllers

Dipl.-Inj. Hans-Peter Otto
SiemensAG
Nuremberg-Moorenbrunn, Germany, Phone 0911/895-2612, Fax
0911/895-2122

Dipl.-Ing. Gunter Rath
SiemensAG
Nuremberg-Moorenbrunn, Germany, Phone 0911/895-2253, Fax
0911/895-2122

Abstract
A new fast and reliable way of writing programs for PLCs is the state diagram programming
method. This method enables both sequential and non-sequential processes to be described in a
graphical form. Automation tasks are broken down into function units, of which the states and
their coordination are described graphically by state diagrams. Each state diagram has only one
active state, but can exchange information with other diagrams for coordination purposes. The
result is a set of interlinked state "automatons". Grouping, for example by machine
subassemblies, gives the automation task a clear structure.

The subject of applying the state diagram concept to PLC programming was also dealt with by
a working committee of the VDW (Association of German Machine Tool Manufacturers) to
increase the efficiency of PLC programming. On the basis of these results a programming tool
executable under Windows 95 has been developed which enables state diagrams to be used for
programming PLCs right through from the draft stage to testing, documentation and
diagnostics.

Keywords
State Diagrams, Messages, Templates, Views, Status

www.manaraa.com

28 Software Engineering for Manufacturing Systems

1 METHOD

A new fast and reliable way of writing programs for PLCs is the state diagram programming
method. This method enables both sequential and - especially - non-sequential, asynchronous
processes to be described in a graphical form. The key advantage for the user is that this
method of representation is not only suitable for PLC programmers but also for mechanical
engineers, commissioning engineers and service engineers.

The application of the state diagram concept to PLC programming with a view to increasing
efficiency in PLC programming was also dealt with by a working committee of the VDW
(Association of German Machine Tool Manufacturers) t 4 t. The Automation Group of
SIEMENS AG has used these results to develop HiGraph, a tool for the new SIMA TIC S7
PLC family which enables you to use state diagrams for programming PLCs right through from
the design stage to testing, documentation and diagnostics.

Before programming automation tasks with state diagrams, you must break them down into
(mechanical) function units, e.g. the actuators of a machine. You then describe the action of
each function unit using state diagrams. The diagrams show states in the form of circles and
transitions in the form of arrows.

o States 0, 1, ...

o Transitions tij> .. ·

Fig. 1: Elements of a state diagram

States can describe either static "processes" (e.g. rear stop position) or dynamic processes (e.g.
forward motion). The transitions represent the permissible transitions between states. States
can also be used to trigger actions and transitions can be assigned conditions.

www.manaraa.com

State diagrams: a new programming method 29

You can use messages to "synchronize" the function units and/or "coordinate" them with a
higher-level state diagram. In this way you can obtain a set of interlinked state automatons.

Coordinator

Unit 1

Fig. 2: Exchange of messages between diagrams

It is often helpful to divide the function units into groups (e.g. to correspond with the
subassemblies of a machine) and use a coordinator for each group. This gives the PLC
program a clearer structure and improves the reusability of the individual sections of the
program.

www.manaraa.com

30 Software Engineering for Manufacturing Systems

2 PROCEDURE FOR PROGRAMMING A PLC USING STATE
DIAGRAMS

2.1 Task definition

Before beginning to solve an automation problem a definition of the task must be available.
This is normally provided by a specialist engineer. First of all, we expect to receive a process
schematic containing all the main components (function units) of the machine, subassembly or
plant to be controlled and clearly showing the mutual effect of their actions. As an example,
the diagram below shows the rotary table of a milling machine for the machine tool industry
with the following function units:

• Motor

• Index
• End support (fixing clamp)

otor IndeJ ~S8l'ted

Fig. 3: Example of a rotary table

End SUppOtl
clam pJrel8ase

In addition to the process schematic the programmer also expects to receive a functional
description. In machine building this usually consists of a function chart. But what is to
prevent the engineer from creating this using a state diagram editor instead of drawing it on
paper? In our example, the chart would look like this:

www.manaraa.com

State diagrams: a new programming method

in P~S

Motor in P~S

M change
~----C:(lA from NC

®
Already
in P~S

Ready to move

Check
direction

Position

Release end support
Retract index

Fig. 4: Coordination chart for rotary table

31

Using the HiGraph editor also has the advantage that the resulting diagram can be passed on to
the programmer for expansion and the addition of finer details.

2.2 Programming

Defining the objects in the process

A task definition as described above comprises both process schematics and functional
descriptions in the fonn of state diagrams. The process schematics must now be checked to
ensure that they contain all the function units (motors, valves, etc.). To check the functional
descriptions it is advisable to divide the machine into subassemblies such as spindle, revolver,
etc. with their respective function units. You then assign a state diagram to each function unit.
Since the functions of the individual subassemblies can be perfonned independently of one
another, it is necessary or at least desirable to provide each subassembly with an additional
state diagram as a coordinator.

www.manaraa.com

32 Software Engineering for Manufacturing Systems

The rotary table in the task definition above, for example, consists of three function units: the
motor, the index and the end support (fixing clamp). A state diagram is provided for each of
the function units and one for coordination (i.e. 4 diagrams in our example).

Describing junctions rather than "programming" them

The ''programmer'' now uses state diagrams to describe each of the function units and the
coordinator, i.e. to define the possible states and the transitions between these states. It is
convenient to proceed step by step as follows:

• Describe normal operation (how you envisage the function)
• Describe initialization, i.e. the conditions to be observed when switching on the controller
• Analyze possible abort criteria for motion states, e.g. Reset
• Derme the conditions for exiting abort states
• Derme the monitoring precautions (e.g. monitoring times for motion states).
You must also define the messages for coordinating the state diagrams.

Task-oriented diagram views

If all the operating states of the function units are included, the diagrams tend to become rather
unwieldy. The graphic for a state diagram is therefore divided into a number of levels, which
can be displayed as required. These levels are called views because they each display a different
aspect of the state diagram.

The display reproduced below shows a diagram in Basic/Norma1 view.

www.manaraa.com

State diagrams: a new programming method 33

Fig. 5: State Diagram in "Normal" View

Wait and monitoring times

HiGraph allows you to activate a wait time and a timeout for each state.

A wait time causes the diagram to remain in the state in which the time was activated for at
least the set time.

A timeout enables you to monitor the timing of motion states. If there is no state change
within the timeout set, an error message is issued containing the diagram group number, the
diagram number and the number of the state in which the error has occurred. In this way
powerful error diagnostics can easily be integrated at the drive and coordination level.

www.manaraa.com

34 Software Engineering for Manufacturing Systems

State-independent functions

It is frequently necessary to keep a constant check on certain criteria (monitoring or abort
conditions) independently of the current state in order to change to the relevant error or abort
state. This is the purpose of the Any transition, which allows changes from any state of the
diagram to a defined state. This enables limit switches to be monitored for non-permissible dual
use, for example. If the target state is designated as an error state, an error message is
automatically issued.

1 Back

Forward motion
2 OZ:2500

Fig. 6: Diagram elements for error diagnostics

Reusing diagrams

Considerable rationalization can be achieved by reusing software which has already been
tested. In automation systems, this is particularly effective with the function units at drive level.
For example, you can generate and test the functions for valves with one, two or three stop
positions or for motors as part of a new project and use them again afterwards. For maximum
flexibility of reuse, HiGraph provides templates. For this purpose, all signals (inputs, outputs
and messages) are treated as formal parameters to be defined in the interface declaration for
each diagram. When using a template you merely assign the addresses of the signals to the
formal parameters. If you want to store the diagram as a template, you store the entire diagram
with the exception of the addresses assigned in the interface declaration. By entering the
addresses of the signals of a different function unit you can reuse the complete functionality. If
modifications are necessary for the new functional unit, you can make them without affecting
other function units.

www.manaraa.com

State diagrams: a new programming method 35

2.3 Program testing

Once the program is in the PLC, the commissioning engineer can conveniently start to test it
using the same method of representation as that used by the engineer and programmer to
describe the tasks. The Status display at graphical level, which marks both the current state
and the last transition, makes the functions more transparent. The graphic is constantly updated
to keep pace with the process, so that the user can see the current transition and the
subsequent state of the state diagram. This means that errors in the program logic can readily
be detected by people who were not involved in the programming. The following section of a
display illustrates the Status function.

/I From Index;
UCR MINJNJNSERTEO;

;/to Index;
S MKOJNJNSERT;

/I From Motor;
UCR MMO_MOJNPOS;
U RESET;

Fig. 7: Section of display showing status

Motor in position

If changes need to be made to a function in the program, they can be made in the graphic
display or in the zoom, as when writing the program. The program is then recompiled and
transferred to the PLC again. Since this can be done while the PLC is in operation, the
program test can be continued immediately.

2.4 Service and diagnostics

Service is required when the plant or machine is out of operation as a result of a fault. In the
majority of cases, the fault is not in the PLC and it can be used for diagnosis. HiGraph provides
support in the form of monitoring times and Any transitions, as previously described. This

www.manaraa.com

36 Software Engineering for Manufacturing Systems

enables faults to be located and corrected quickly and reliably, thus minimizing machine
downtimes.

On operator panels with alphanumeric display facilities a diagnostics file can be displayed with
HiGraph. This enables you to use the texts entered at the programming stage for a plaintext
display of the error location and an indication of the status of the signals affected.

3 SUMMARY

The following features distinguish the state diagram programming method from the PLC
programming methods commonly used at present:

• Object-oriented
For each function unit (of a machine) you create a state diagram, which gives a graphical
description of all the possible states of the unit. The mode of presentation is very easy to
understand.

• Reusable
You can store the state diagrams as templates. By adapting the formal parameters for the
inputs and outputs of other function units the diagrams can be used again for the same
functions. Adjustments can be made for special attendant circumstances without affecting
other function units.

• Clear and easy to understand
The state diagram method is the first method to provide a clear graphical representation of
the sequence and unit control or drive level. You can label and enter comments for every
state and every transition.

• Process independent
Whether you are dealing with a lathe, a honing machine, a transfer line or any other control
problem, you can always use the same programming tool.

HiGraph is a tool which enables you to describe, test and correct the functions of machines and
plant sections with the same method of representation right through from the definition of the
task by the engineer to programming, commissioning and ultimately servicing. And because the

documentation automatically always includes the graphics and all the details, undocumented
function changes are a thing of the past.

www.manaraa.com

4 REFERENCES

H.Konig

A. Herrscher

State diagrams: a new programming method

Beitrag zur Strukturanalyse und zum Entwurf von Steuerungen

fUr Fertigungseinrichtungen

Flexible Fertigungssysteme - Entwurf und Realisierung

prozeBnaher Steuerungsfunktionen, Springer-Verlag

2 J. Fleckenstein Zustandsgraphen fUr SPS GrafIkunterstiitzte

3 VDW 1013

5 BIOGRAPHY

Programmierung und steuerungsunabhangige Darstellung,

Springer-Verlag

Pflichtenheft und

durchgangigen

Dokumentation

Bewertung von

Software-Erstellung

CASE-Tools zur

und Software-

37

Hans-Peter Otto studied electrical engineering and information technology (software
engineering). Since joining Siemens AG, he has worked in various development and marketing
departments as a systems programmer and is now section head. As Chairman of the German
standardization group in DIN DKE (German Electrotechnical Commision of DIN) and as
German delegate to the corresponding international IEC Working Group, he plays an
important role in the international standardization of PLC technology (IEC 1131).

Giinter Rath studied general electrical engineering. Since joining Siemens AG, he has worked
in the field of development and marketing for programmable logic controllers and numerical
controls. At present, his work focuses on the development and market entry of a PLC
programming system for state diagrams.

www.manaraa.com

4

Applying simulation modeling techniques
and assessment of control for the design

software

Il. Astinov, N. Todorov
Laboratory 'Simulation Modeling in Industry' (SM/)
MTF, TMMM, Technical University - Sofia (VMEI), 1756 Sofia,
BULGARIA, Tel: (+3592) 6363784, FAX: (+3592) 683 478,
E-mail: ila@Vmei.acad.bg

Abstract
The paper presents a non-traditional application of simulation modeling techniques as a
decision aiding tool in determining the effectiveness of a control software algorithm in
manufacturing systems. Normally software engineering methods and techniques would bring
the development of a control software module to a level where certain predesigned
functionality is achieved. In many cases however, such functionally will not guarantee a reliable
operation of the overall system. Additionally, stochastic factors such as the randomness of
workpiece arrival intervals, processing times, breakdowns, which influence the operation of the
real system are not taken into account. An application in using simulation modeling techniques
to evaluate the effectiveness of different control algorithm designs and structures, prior to their
implementation in real systems is presented in this paper.

Keywords
Modeling, simulation, decision making, control technology

1. INTRODUCTION

Control software plays a significant role in the effectiveness of modern manufacturing systems.
Typically control software is designed to run on general purpose or specialized computers. It
would operate on the principles outlined below.

• Analog or digital signal will be fed to the computer running the control software. These
signals contain information reporting the state of the system being controlled.

www.manaraa.com

Applying simulation modeling techniques 39

• The control software will process the incoming information and according to the control
algorithm will react (if required) with appropriate feedback information.

• The feedback information is translated by appropriate hardware to follow-up actions on
behalf of the system.

Figure I is an illustration of these principles which shows the information streams coming
from the system. These streams being processed by the control algorithm and then relevant
control information flowing back to the system as a product of the control algorithm.

information from the
manufacturing sy tem

L..ooII_~ ____ conrrol infonnation fed

back to system

Figure 1 Loops of information streams in manufacturing systems.

control algorithm

A well designed and error free code would reduce time for manufacturing, increase the
system reliability yet contribute to a lower cost of the end product. The paper presents the
experience of the authors in utilizing simulation modeling techniques aiming to develop
effective new or improve existing control algorithms.

2. PROBLEM DEFINITION AND SOLUTION PROPOSED

2.1 Problem definition

A traditional approach in the design and implementation of such software is to utilize software
engineering methodologies in developing the algorithm and code. Later on the control software
is tested on the real system i.e. on the manufacturing cell, on the AGV or in the warehouse (see
Figure 1). Apart from the general advantage that the performance of the real system is being
observed, this approach has the following disadvantages.

• Tests generally are limited in time as manufacturing systems are to be put in operation
within a strict deadline.

• Experimenting with the real system is obviously an expensive and in many cases could be a
dangerous exercise.

• The majority of the stochastic factors like the randomness of workpiece arrival intervals,
processing times, breakdowns, which influence the operation of the overall system can
rarely be taken into account.

www.manaraa.com

40 Software Engineering for Manufacturing Systems

2.2 Solution proposed

In order to address extent the mentioned disadvantages, a solution to the problem was
adopted, having the outline given below.

• Create a model of the manufacturing system using appropriate and familiar simulation
software. This could be any general purpose software like SLAMSYSTEM or a simulator
like FACfORlAIM.

• Design alternatives to the control algorithm for the components of the system that are to be
controlled. If necessary, produce code for each alternative in a language, that can be linked
to the simulation software. Most simulation systems have an open architecture structure
allowing user inserts, written in high level languages, such as FORTRAN 77 or C++ to be
linked to the main executable file, gain access to the data structures and manipulate them.

• Create scenarios each of which will utilize a version of the control algorithm. Define clear
performance measures of the system. Defme and perform experiments with the scenarios of
the model.

• Compare the values of the performance measures estimated as results of the simulation runs
and take appropriate decisions for the choice of the most effective version of the control
algorithm.

manufacturing
system

control algorithm
ver.;ions

ver.;ion I

ver.;ion 2

ver.;ion n

f
simulation model of the system

scenarios

scenario I ""

~

scenario 2

scenario n

simulating the
scenarios

perfonnance measures analysis
and decision making

Figure 2 Concept of the solution proposed.

Figure 2 illustrates the concept of the solution proposed. By this means simulation
methodology and more particular discrete event simulation is utilized to a full extent as a
powerful tool in modeling manufacturing systems (Astinov 1990, Pritsker 1986). Yet in this
particular case (Figure 2) the etTectiveness of the control algorithm over the identified

www.manaraa.com

Applying simulation modeling techniques 41

performance measures of the system is being studied, rather than the system as a whole.
The following section describes a case study, illustrating the effect of the presented approach.

3. CASE STUDY - THE KILN FACILITY

3.1 Components and their purpose in the faciDty

The case study relates to a kiln facility, typical for companies manufacturing ceramic products
such as tableware (cups, plates), bathroom and toilet equipment. An example of the
configuration of such facility is given in Figure 3.

kiln kiln conveyor

Finished items leave here Raw items enter here loading AGV path

Figure 3 Typical configuration of a kiln facility.

Items to be fired in the kiln arrive at random intervals in the input of the system. They are
placed on pallets in the pallet loading station and afterwards the loading AGV would distribute
them over the input conveyors. The distribution pattern depends on the control algorithm
incorporated in the AGV controller. Once placed on the conveyor that feeds the kiln, the items
are transported at a rate, that will allow them to be fired for the appropriate length of time. The
conveyors after the kiln are used to hold the pallets with fired items during the night shift, as
the kiln operates on a 24 hour basis, and during the night pallets with fired items are not
removed from the system.

3.2 Versions of the AGV control algorithm

The present case study concerns an existing kiln facility, which had a particular control
algorithm for the loading AGV implemented. From an operational point of view, the algorithm

www.manaraa.com

42 Software Engineering for Manufacturing Systems

perfonned the control functions exactly as it was designed. The principle structure of the
algorithm is outlined in Figure 4 (a).

pallet with item avallable
check for free space on any conveyor:

free space available
put pallet in a uniformly chosen free
conveyor space

free space not available
pallet waits

pallet with item available
check for free space on kiln conveyor:

free space on kiln conveyor available
put pallet on kUn conveyor

free space on kiln conveyor not available
check for free space on any other conveyor:

free space available
put paUet in a uniformly chosen free
conveyor space

free space not available
pallet waits

(a) Outline of the existing control (b) Outline of the proposed improvement of
algorithm. the control algorithm.

Figure 4 Structures of existing and proposed AGV control algorithms.

It was thougt that the utilization of the kiln could be improved by giving priority to the kiln
conveyor when a pallet with an item arrives. The outline of the proposed improvement is given
on Figure 4 (b). The decision whether such a modification would be worthwhile was difficult
to make because of the facts given below.

• The kiln facility as a system had stochastic properties, as the arrivals of parts at the system's
input were in random intervals of time.

• The speed pallets were transported through the kiln was so low that the impact on giving
priority to the kiln conveyor (whether positive or negative) was not very clear.

• If such change in the control algorithm proved to be ineffective this could lead to significant
losses in tenns of production quantities and energy. Such risk was not accepted by the
management of the company.

3.3 The solution derived

The methodology described in Section 2 was employed in order to give a justified answer to
the problem. A model of the kiln facility was developed using the SLAMSYSTEM general
purpose simulation software (SLAMSYSTEM 1993). Appropriate code was developed for both
versions of the AGV control algorithm.

Face validity and expert assessment were employed to validate the operation of the model,
using the code of the existing AGV control software. Two scenarios were created each using
one of the versions of the control algorithm. For both scenarios computer animation was
produced, illustrating the dynamic behavior of the kiln facility. Separate frames of this output
are given in Figure 5.

www.manaraa.com

Applying simulation modeling techniques 43

Figure 5 Computer animation frames illustrating the dynamic system behavior.

The performance measure identified was the system throughput for 24 hours on the
assumption that no other conditions of operation will be changed except the AGV control. The
values of the throughput of the kiln facility estimated by the simulation runs are compared and
illustrated on the bar graph given in Figure 6.

No. of pallets
processes for 24

Existing AGV
control algorithm

Proposed AGV
control algorithm

Figure 6 Comparison of the throughput of the kiln facility utilizing different AGV control
algorithms.

As it is seen from Figure 6, the implementation of the control algorithm with the structure
given on Figure 4(b) will lead to an increase of the kiln facility throughput with an average of
22 pallets i.e. 39% in 24 hours. This result is a strong proof of the increased effectiveness of
the new algorithm and suggests that it would be worthwhile to proceed to implementation.

This approach was extensively utilized in two other significant projects. The first one
related to power stations using combined multiple renewable energy sources (wind, solar
irradiation, batteries and diesel units). The project was sponsored by the Directorate General
for Science and Technologies of the European Union under the PECO Scheme (Project
ERBJOU2CT920245). Two major control approaches and related algorithms of the power
station were studied. Performance measures included diesel fuel consumption, energy
produced by renewables, total energy from renew abIes dumped in the dump load. These were
evaluated through separate simulation runs. The system was strongly influenced by stochastic
factors, such as power consumption, wind speed, solar irradiation and temperature. Values of

www.manaraa.com

44 Software Engineering for Manufacturing Systems

each of these factors vary over time in a random manner (Astinov, 1994; Astinov Ivanova,
Pavlov et al 1995).

The second project concerned the improvement of the through put of a major crossroad in
Sofia, controlled by traffic lights (Astinov, Ivanova, Stoichkov et al, 1995). This project is
currently under development in collaboration with the company involved in the installation and
maintenance of urban traffic control systems in Sofia. The crossroad as a system is also
stochastic, as car arrival intervals from each direction are random. The component in the
system that can be modified is the control algorithm changing light signals for each direction.
For the test case an improvement of an average of 18% was estimated for one of the control
algorithms.

4. CONCLUSIONS

The following conclusions can be drawn, based on the results achieved so far:

• As described in Section 3.2, a version of the control algorithm may be designed according
to a specified functionality. It may also be developed in appropriate code and be error free.
It may operate exactly as the designers wanted it to operate. However, this is not a
guarantee that the control functionality incorporated in the particular algorithm will
assure good overall system performance. The major advantage of the reported approach
is that it (the approach) allows the developers of control software to verify not only the
proper operation and correct structure of the control algorithm, but to evaluate the
effectiveness of the algorithm over the operation of the overall system based on
redefined performance measures.

• The proposed approach eliminates the disadvantages of the development and
implementation of control software given in Section 2.1. Moreover, as many versions of
control algorithms as needed may be developed and studied, thus aiding the decision making
process towards a rational and validated choice of suitable control algorithm functionality.

• Simulation runs can be performed for a long duration of the operation of the system, taking
into account the stochastic properties of system's behavior (if available). Thus, the estimates
of performance measure values will be statistically justified and correct.

• Computer animation of the system's operation is an additional tool in this approach,
allowing experts to gain a realistic view of the control algorithm's influence to the overall
operation of the system.

5. ACKNOWLEDGMENTS

The developments and results reported in this paper are part of the activities of the HC&M
project ERBCIPDCT940023 sponsored under the PECO scheme of the European Union.

The activities on the simulation of combined multiple renewable systems, mentioned in the
present paper were part of the activities of the ERBJOU2CI'920245 project sponsored under
the PECO scheme of the European Union.

Words of thank are to be said to Sonia Hristova, Hristo Dinov and Dinitar Cerov all from
Traffic Signs Ltd. - Sofia for their assistance and collaboration in the crossroad project.

www.manaraa.com

Applying simulation modeling techniques 45

Fmally the authors would like to express their appreciation to Zlatka Tchkarova, Wladimir
Simeonov, Blagovest Stoichkov and the CMRES team - all students at the laboratory for
Simulation Modeling in Industry for their valuable contributions in the mentioned projects.

6. REFERENCES

Astinov, D. (1990) Simulation modeling of machine tools and systems. PhD thesis. Technical
University Sofia, Sofia.

Astinov I.L., Bopp G., Consoli A., Lalas D.P., Morgana B., Wrixon G.T. (1994) Combined
Multiple Renewable Energy Sources System Simulator Facility. Proceedings of the
European Wind Energy Association Conference and Exhibition (EWEC'94), Thessaloniki

Astinov D., Ivanova D., Pavlov P, Virgili A., Leotta, Nocera V., Bopp G., Rehm M ..
A.(l995); Simulating power stations driven by combined multiple renewable energy
sources. International Symposium SIELA'95, Volume 11,183-188

Astinov D., Ivanova D., Stoichkov B., Simeonov W. (1995) Simulation modeling in the control
of traffic flow. Proceedings of the III National Scientific Conference "Automation in
Engineering and machine tool building", Volume I, 73-76

Pritsker, A.A.B. (1986) Applications of simulation. Introduction to simulation and SLAM II.
Halsted Press, John Wiley & Sons, New York, Chichester, Brisbane.

SLAMSYSTEM User's Guide (1993) Pritsker Corporation

7. BIOGRAPHY

Prof. llano Astinov has an MSc degree in production engineering and PhD degree in systems
simulation from the Technical University - Sofia. Has over 25 publications in national and
international forums. He has specialized in discrete event simulation at Purdue University
(USA), Pritsker Corporation (USA), Staffordshire University (UK) and Cranfield University
(UK). He is head of the laboratory for Simulation Modeling in Industry at the Technical
University - Sofia and a board member of the UNIDOIDP/BUUOO6/96 project. He is Deputy
Coordinator of three international academic projects under the EU TEMPUS scheme and
Associate Contractor to three international research projects under the EU PECO scheme
involving partners from 8 EU countries.

Prof. Nikola Todorov has an MSc and PhD degree in the field of mechanical and production
engineering. He has over 40 publications in national and international conferences and
magazines. He is head of the laboratory "CAD/CAM and FMS technologies" at the Technical
University - Sofia. For over 15 years he was the head of the department of CAD/CAM
applications at the Institute of Machine Tools and Systems - Sofia. He is a board member of
the UNIDOIDP/BUUOO6/96 project.

www.manaraa.com

5

A CP-net Approach To Control
Logic Engineering

Mathew Farrington and Jonathan Billington
Telecommunications Systems Engineering Centre,
Institute for Telecommunications Research,
The University of South Australia.

Abstract
Coloured Petri nets have been used to model and therefore specify the control logic in an
automotive assembly line. This paper describes the modelling activity and shows how two
models of the same system, one developed using top-down methods, the other developed
using bottom-up methods, may be fused.

Keywords
Coloured Petri nets, Programmable Logic Controllers (PLCs), Discrete Event Manufac­
turing, Modelling.

1 INTRODUCTION

An automotive assembly line has been analysed and modelled in previous work. The
models were developed using the C programming language and describe the control logic
and physical operation of the line. A formal toolkit based on Petri nets is now being
used to construct a model of the assembly line from the existing code. The model may
then be analysed and verified ensuring that any errors in the assembly line design are
uncovered and removed. The resulting CP-net model formally specifies a set of abstract
system requirements against which new, distributed system models may be constructed
and verified.

This paper describes the initial CP-net modelling activity in which two models were
constructed, one from the top down, the other from the bottom up. Knowledge of over­
all system behaviour was used to construct the top-down model. At each level, agent
behavioural requirements and product processing requirements were identified and mod­
elled. The requirements placed on agent, product and process elements implied a more
detailed, lower-level model, also consisting of agent, product and process elements. This
modelling activity recursed downwards until all the behavioural and processing require­
ments had been resolved into their discrete control logic and machine-level events. The
bottom-up model was constructed by directly representing the ladder logic and physical
relationships (actuator and sensor relationships) present in the PLC/system feedback loop
using CP-net structures. The final model is a fusion of these two.

www.manaraa.com

A CP-net approach to control engineering 47

2 TOOLS AND TECHNIQUES

Embedded manufacturing control software such as PLC logic is notoriously difficult to
maintain since it represents control requirements at a very low level [Gilles, 1990]. Typ­
ically this is overcome by specifying and maintaining the code at a higher level where
the control relationships are preserved in a more re-usable form [Venkatesh, et al., 1994].
High level code is also more transportable because it is (in theory) platform or hardware
independent and may be compiled into PLC ladder logic as required.

Even more promising though are formal methods. They are gaining popularity in the
manufacturing control area and have the potential to achieve time and cost savings
throughout the life-cycle of a system [Billington, 1991]. If a manufacturing system is de­
signed using formal methods then specification errors are reduced (a maintenance saving);
the specification may be executed to quickly gain an understanding of the system require­
ments (a time saving); the performance of the system may be analysed and verified; the
specification may be compiled into code (thus reducing coding errors as well as lowering
the time to prototype) - all of this before committing to an implementation.

The Telecommunication Systems Engineering Centre* supports a CP-net toolkit known
as FORESEE [Billington, 1991]. It consists of drawing, simulation, formal analysis and

implementation tools. The toolkit includes: Design/CPNt, a graphical editing, simulation
and occurrence graph analysis tool; TORAS, a tool for the exhaustive simulation of Petri
net specifications using state space reduction techniques [Lester, 1994]; and PROMPT a
tool for the automatic conversion of Petri nets into executable code (C).

3 AN INTRODUCTION TO CP-NETS

3.1 Assembly Line Overview

A brief introduction to the assembly line is needed before the Coloured Petri net models
are introduced. The automotive assembly line is divided into stages or work cells each with
its own set of actuators, sensors, welding stations, conveyors etc. Each stage assembles
components or attaches components to a vehicle as it progresses through the line. One
PLC controls the entire system. The system is only partially automated. Workers must
perform positioning, loading and spot welding tasks. Worker safety is an integral feature
of the system control logic. For example, a conveyor will advance only when both workers
in a two person work cell are at their control consoles.

A sub-section of the assembly line, known as the roofing bay, accepts a bare chassis,
attaches reinforcing struts and roof panels and then releases the chassis to the next bay.
The roofing bay is the focus of this paper.

*The TSEC web page, http://www.itr.unisa.edu.au/tsec/ .
tOesign/CPN is available from Aarhus University, http://www.daimi.aau.dk/designCPN/ .

www.manaraa.com

48 Software Engineering for Manufacturing Systems

color Roof - with aediua I long I very_long;
color Chassis - with luxury I sedan I wagon;
color strut - with regular_strut I wagon_strut;
color Welder = with welder;

color Workers = with worker;

color WorkerAndlnfo = product Workers*Chassis;
color WorkerAndStrut = product Workers*Struti
color WorkerAndRoof = product Workers*Roof;

color ChassisAndstxut = product Chassis*Strut;
color Car = product Chassis*strut*Roof;

color Bay = union BayChassis:Chassis +
BayChassisStrut:ChassisAndStrut +
BayCar:Car;

fun strut_type(c:Chassis):Strut - case c of
luxury -> regular_strut

I sedan -> regular_strut
I wagon =) wagon_strut;

fun roof_type(c:Chassis):Roof case c of

var roof: Roof;
var chassis: Chassis;
var strut: Strut;
var car: Car;

lUl[ury -> long
sedan = > medium
wagon =) very_long;

Figure 1 Global Declaration Page for the Assembly Line

3.2 CP-nets by Example

It is assumed that the reader is familiar with basic Petri net concepts [Reisig, 1992].
Coloured Petri nets (CP-nets) are essentially ordinary Petri nets (Place Transition nets)
with typed tokens and complex net inscriptions [Jensen, 1992]. CP-nets can specify and
model systems at an implementation independent level. CP-nets are based on a well
defined semantics - a system specified in CP-nets may be formally analysed or verified be­
fore implementation. CP-nets can model concurrent processes and are therefore naturally
suited to the design and modelling of concurrent manufacturing systems. In this short
introduction to CP-nets their semantics and dynamics are demonstrated by example.

Consider Figures 1 and 2. This CP-net was constructed using Design/CPN, a tool in
which types and inscriptions are written in a functional programming language called CPN
ML. Types or colour sets may be arbitrarily complex and are defined on a declaration page
associated with the CP-net. In Figure 1 the colour sets Roof, Chassis, Strut, Welder and
Workers are enumeration types. The WorkerAndlnfo, WorkerAndStrut, WorkerAndRoof,
ChassisAndStrut and Car colour sets are comprised of tuples. Bay is a union of the
colour sets Chassis, ChassisAndStrut and Car. roof, chassis, strut and car are typed
variables. Functions can be defined as well: fun strut_typeO takes a chassis as input
and returns the strut that is required for that chassis. Similarly, fun rooLtypeO returns
the type of roofing panel.

Consider the CP-net structure in Figure 2. A place may only contain tokens which be-

www.manaraa.com

- ,
,· ••• u o; .. •
"loft. "
' ·"ny_'Of! •

~".,. ..
: _r_~

, , ,

, , , , ,

A CP-nel approach 10 control engineering

....,
IO·re .. l.rJtr .. t o
IO' '''.'Qfl __ tnt

=---- ----®~- ------C -

Figure 2 Top Level CP-net of the Assembly Line

,
\
\
\

\

\

49

, ,­,

long to its colour set. For example, the place Roofs has a colour set Roof and hence may
only contain the tokens medium, long and very~ong. Adjacent to the place Chassis is
the inscription '5' luxury + 5' sedan + 5' wagon'. This is an initial marking (of a place) .
The inscription is a multi-set where multiple instances of a particular token are repre­
sented by a preceding integer and apostrophe. Arcs may be inscribed with expressions
of arbitrary complexity (including functions) that evaluate to multi-sets (over the colour
set of the associated place). A guard is a boolean expression associated with a transition.
The expression must be true for the transition to occur. The transitions Get Roof and
Get Strut are guarded (by the expressions in square brackets).

Execution of a CP-net is also best demonstrated by example. Consider the transition
Rotate. Bay, Chassis and Console are input places and Bay, Cars and the two Free
places are output places with respect to Rotate. The three input places have non-empty
initial markings. For Rotate to be enabled there must be sufficient tokens on the input
places to satisfy the input arc expressions. This is the case: two worker tokens are at the
Console; a car token is in the Bay; and there are chassis tokens in the Chassis place
(five instances of three colours). Variables car and chassis must be bound to tokens
before Rotate is enabled. The bindings in Figure 3 are possible. Rotate occurs for one of
these bindings. Assuming that the transition occurs with binding iJ:3, the resultant marking
of output places Freeleft, Cars, Freeright and Bay are given in Figure 4.

www.manaraa.com

50 Software Engineering for Manufacturing Systems

bl =<car=(luxury ,regular...strut, very-long), chassis=luxury>
b2 =<car=(luxury ,regular ...strut, very-long), chassis=sedan>
b3 =<car= (luxury ,regular ...strut, very -long), chassis=wagon>

Figure 3 Possible Bindings for Rotate

M(Freeleft) = l' (worker ,wagon)
M(Cars) = l' (luxury,regular...strut,very-long)
M(Freeright) = l' (worker, wagon)
M(Bay) = 1 'BayChassis(wagon)

Figure 4 Rotate Occurred for b3

4 MODELLING THE ASSEMBLY LINE

4.1 Top-Down Modelling

A top-down approach to modelling recognises that even the most simple models are of
some benefit when it comes to understanding system behaviour and may be built upon
as more detail is required.

Petri nets are well suited to the task. First a simple system is constructed with only
the most basic or important characteristics and then simulated. Once satisfied with the
net's behaviour, extra conditions or control structures may be added or transitions may
be replaced with sub-nets until every significant element of the system is represented in
the model. This technique has been well documented [Jensen, 1992, Zhou and Leu, 1991,
Zhou et al., 1989, Desrochers and AI-Jaar, 1995].

It is useful to introduce some terminology at this point. Manufacturing systems make
products. The market ready product which leaves a system differs from the raw products
which enter because it has been processed by the agents which make up and are controlled
by the system. This generic terminology groups workers with agents and worker behaviour
with control systems.

More precisely then: processes are (collections of) manufacturing events which transform
products (usually from a less evolved to a more evolved state); agents are the entities
(physical or logical) which enable and perform processes (and so transform or transport
products); control systems coordinate the agents.

Some extra terminology is needed to support the notion that a manufacturing sys­
tem consists of many smaller systems (from factory, to assembly line, to workbay, "',
to clamp). Processes may be unresolved or fully resolved. An unresolved process is a
high-level process (such as adding a roof) where control implementation details are not
provided. An unresolved process may represent many other processing steps in a manu­
facturing system (e.g., the top-most unresolved process in automotive assembly is 'build
car). A fully resolved process is a machine-level (or worker-level) event which may not be
resolved any further. The agents which enable these events are called control agents and
correspond to controller or worker requirements (typically PLC output register values or
worker behaviour).

www.manaraa.com

A CP-net approach to control engineering

I color Roofing - with roofing_agent;

l' rOOfin g_a gec;:500fing

I roofing_agent
S/luxury+
5 / sedan+

5'wagon -~haSSIS

car
-- -----~ .. IS

chassis ~~

Figure 5 The Roofing Bay as a Single Transition

4.2 Applying the Top-Down Approach to the Bay

51

A full description of the methodology is given in [Farrington and Billington, 1996]. It may
be summarised as follows: Places are assigned to each agent state and product location. A
transition is assigned to each process. Agent states are made input places of those processes
for which they are pre-conditions and output places of those processes for which they are
post-conditions. If a transition represents a fully resolved or machine level process then the
agent states preceding or proceeding the transition correspond to discrete control logic or
machine-level events. Tokens are defined for each agent. Agent states are represented by
tuples. Tokens are defined for each product. Product locations are represented by union
colour sets. Arcs are then drawn linking pre-condition places to the respective processes,
and processes to the respective post-conditions. Each unresolved process must now be
resolved. Local products, processes and agents are again identified and a new CP-net
structure built to reflect the extra resolution in the model.

The top level CP-net of the roofing bay consists of of a single transition representing
the entire roofing process and places to represent the roofing bay agent and the input and
output chassis buffers (see Figure 5). CP-nets are hierarchical. The transition Assemble
Chassis in Figure 5 represents the sub-net in Figures 1 and 2. Consider now the unresolved
process Join Roof in Figure 2. The top-down methodology has been used to construct
a CP-net for Join Roof (see Figure 6). The processes (transitions) in Figure 6 are fully
resolved (i.e., they are machine-level events) and so define the control logic that must
be provided to enable the correct event sequencing, the actuators and sensors needed to
communicate this information and the man machine interface (MMI) required to integrate
the automatic and manual steps in the roofing bay.

Similarly for the other unresolved processes in the assembly line model, the top-down
approach yields a set of control logic requirements. These requirements may be converted
into PLC logic if needed. However, in this modelling exercise the requirements are not
developed any further. Instead the existing control logic (PLC ladder logic) is directly
modelled and developed from the bottom up. The bottom-up models are then fused with
the top-down models so that extra system details can be incorporated into the (until
now idealised) model of the assembly line. The final, fused model may then be analysed,
executed, verified and form the basis for future modelling activities.

www.manaraa.com

52 Software Engineering for Manufacturing Systems

r
J

El
~

oj

w ,..,

..."

--~-

1 "

-,

Red -
..."

E
~-----------~~---------. a.-,

}-_____ o __ -.. - -,
..."

' , -

Figure 6 The Roofing Process Resolved

4.3 Bottom-Up Modelling

t

I _, E

a.-,

The translation of PLC ladder logic into Petri nets is already being automated, with
some researchers proposing algorithms for the design of Petri nets in particular applica­
tion areas [Venkatesh et ai" 1994] . Such automated techniques produce ordinary Petri
nets (monochromatic CP-nets). These may then be collapsed into much smaller CP­
nets. The collapsing or colouring process recognises that large systems consist of sub­
systems with duplicate functionality. Large systems can therefore be modelled using a
single CP-net structure and different coloured tokens for each sub-section rather than
by many duplicate nets. Domain specific tools have appeared that automate this process
[Darabi and Jafari, 1994].

In this paper a PLC architecture is modelled by CP-nets. Input, output and internal
registers, the PLC program and, when needed, a representation of the discrete steps in a
scan cycle are all included in the model. The control lines and sensor lines used to attach
a PLC to the system may be described by state vectors and are modelled using lists.
Hence the model is already collapsed a great deal compared with the approaches reported
above.

The hardware which makes up the assembly line may be described in terms of machine­
level states and events. For example, a clamp is an agent which may be open or closed.
The events which place the clamp in these states are release and engage respectively. A
PLC-based feedback loop similar to the one shown in Figure 7 controls the assembly line.

www.manaraa.com

A CP-net approach to control engineering 53

Actuators PLCOutputs

Detailed Agent
PLCProgram Behaviour

Sensors PLClnputs

Figure 7 The Bottom-Up Model of the Assembly Line Control Loop

Many of the agents in the assembly line are connected to sensors. Sensors simply translate
the state of an agent into the on-off input signals that are recognised by the PLC. A PLC
program executes repeatedly, operating on the PLC inputs and a set of variables held
inside the PLC. The program calculates a set of outputs, the states of which determine
the operation of actuators which update the state of the agents in the assembly line. The
state of the clamp, for example, is measured by a sensor connected to a PLC input. If the
clamp is open the PLC input is switched on. If the clamp is closed the same PLC input
is switched off. The clamp state is dependent on the actuator which switches it between
states, and so is also dependent on the PLC output which drives the actuator.

The control loop is modelled by the Figures 8 and 9. In this generic model the agent
behavioural dependencies are represented by the single transition Map Agents. The sub­
net associated with this transition defines the relationship between the elements in each
agent. For example, the PLC controls the raising and lowering of the overhead frame by
toggling a single switch. There is however no sensor which tests for the frame being in
its correct lowered state - rather a proximity switch tests for the clamp being lowered.
Hence, the Map Agent sub-net includes a transition which enforces the movement of the
frame and clamp in unison - reflecting the fact that they are joined.

The CP-net in Figure 9 executes as follows: An initial token in the place Sensed Agents
lists the initial states of the assembly line agents which are connected to sensors. The
transition Set Sensors occurs, removing the token and placing a new token in Sensor
Values. The new token (returned by the function sensor..opO) now represents the agent
states in terms of PLC control signals. Scan Inputs occurs, copying this state informa­
tion into the Input Registers of the PLC. The transition Execute Logic represents
a sub-net which contains a CP-net model of the PLC ladder logic and performs the
logic scanning function. Execute Logic occurs, removing the token from the place Input
Registers and the initial token from the place Internal Registers. The two lists of
register values are converted into a form which allows the Execute Logic sub-net to
correctly simulate scanning behaviour. At the end of the scan the new output and inter­
nal register values are converted into lists and copied into the Output Registers and
Internal Registers respectively. The transition Set Outputs then occurs. The out­
put register values are converted into actuator switch settings (or switching requests)
by the function set_switchesO. The transition Switch Agent State then occurs, with
the function set~ent 0 updating the states of those agents which have actuating cir­
cuits connected directly to the PLC outputs. The transition Map Agents then occurs, its

www.manaraa.com

54 Software Engineering for Manufacturing Systems

color Illput - product X*~allge*Colltents;
color Internal - product C*C~ange*Colltellts;
color Output - product Y*Y_RaIlge*Colltents/

color Agellt_State - list Agent
color SWitches - list SWitch;
color IP_Reg - list Illput;
color lilt_Reg - list Illternal;
color OP_Reg - list Output;

var state, Agent_State;
var switc~vector' SWitches;
var ip_reg, IP_Reg;
var illt_reg, lilt_Keg;
var op_reg' OP~eg;

fun set_switches(opr,OP~eg),SWitches - •••
fun set_agellt(swv,SWitcheB) 'Agent_state - •••
fun sensor_op(sta'Agen~State)'IP~eg -

Figure 8 Global Declaration Page Fragment for the Control Loop

sub-net updating the states of any other components in the manufacturing system. The
execution cycle then repeats.

4.4 Fusing the two Models

Figure 10 summarises the fusion process. Every sub-net which contains machine-level
processes and control agents is replaced with a new, fused sub-net, which more closely
resembles the CP-net in Figure 9. For example, in Figure 6 the places and transitions
corresponding to the overhead frame agent (such as place (Lowered. Open) and transition
Raise Frame) are replaced with a new representation of the frame based on the AGENT
CP-net in Figure 9. The places and transitions in Figure 6 which correspond to product
locations or worker agents are preserved and incorporated in the new model. Each fused
AGENT CP-net is then connected to the single PLC CP-net which controls the entire bay
(and the entire assembly line).

5 CONCLUSIONS

Top-down modelling techniques and CP-net tools have been used to develop control logic
specifications for a PLC-based automotive assembly line. Here the system was modelled
in terms of products, agents and processes. Bottom-up modelling techniques and CP-net
tools have been used to construct a model of the PLC logic, the physical relationships
between actuators and sensors and the control loop found in the assembly line.

The initial top-down modelling activity promoted system understanding while the

www.manaraa.com

~ ,

,
I

I

I

'-

Scan
Inputs

A CP-net approach to control engineering

AGENT

Eucu.
IP_Rog logic; oP_RorI

InpU1

~

Ip_~ ""'-!!!L

]'1nlt.1al_lnq)

In_
~ ... ,. PLC

Figure 9 The Control Loop CP-net

55

----j -
-.1 1 So.

I (Mp .. "

bottom-up modelling made use of existing system control logic. The fusion process, sum­
marised in Section 4.4, yields a system model which contains a hierarchy of behavioural
requirements and a set of control logic specifications, so making it easier to identify the
relationships between the bottom-level control logic specifications and the higher level
system behavioural requirements. The fused CP-net model is therefore a useful starting
point from which to derive an error-free assembly line control specification.

REFERENCES

[Billington, 1991] Billington, J. (1991). FORSEEing Quality Telecommunications Soft­
ware. 1st Aust. Con! on Telecommunications Software pp. 169-74.

[Darabi and Jafari, 1994] Darabi, H. and M.A. Jafari (1994). A Zero-One Programming
of Petri Nets to Coloured Petri Net Transformation. Proc. 4th Int. Con! on CIM and
A utomation Technology pp. 25-31.

[Desrochers and AI-Jaar, 1995] Desrochers, A.A. and R.Y. AI-Jaar (1995) . Applications

www.manaraa.com

56

Top-down Model

Bottom-up Model

Software Engineering for Manufacturing Systems

E-"'-- .,

Roofing process
(just one transition in a
much larger system

~_--:::;,,-B_U_i_1Td_ca_r---....;;:-_~model)

~ j-r~' -<r~i.
It ~----\\i
Assemble Chassis

Control Loop model
replaces the machine­
level model developed
during top-down phase

Roofing bay
behavioural model

Machine-level
model implying
control logic

--- ...

Figure 10 Fusing the Top-Down and Bottom-Up models

of Petri nets in manufacturing systems: modeling, control, and performance analysis.
IEEE Press.

[Farrington and Billington, 1996] Farrington, M. and J. Billington (1996). Modelling an
Automotive Assembly Line. Proc. 13th [FAC World Congress.

[Gilles, 1990] Gilles, M. (1990). Programmable Logic Controllers: Architecture and Appli­
cations. John Wiley & Sons. pp. 1-20, 165-213.

[Jensen, 1992] Jensen, K. (1992). Coloured Petri Nets Basic Concepts, Analysis Methods
and Practical Use. Springer-Verlag.

[Lester, 1994] Lester, L.N. (1994). TORAS Documentation. Final documentation for the
TORAS development contract. UNICO Computer Systems.

[Reisig, 1992] Reisig, W. (1992). A Primer in Petri Net Design. Springer-Verlag.

www.manaraa.com

A CP-net approach to control engineering 57

[Venkatesh et al., 1994) Venkatesh, K., M.C. Zhou and R. Caudill (1994). Automatic Gen­
eration of Petri Net Models from Logic Control Specifications. Proc. 4th Int. Conf. on
CIM and Automation Technology pp. 242-247.

[Venkatesh, et al., 1994) Venkatesh, K., M.C. Zhou and R. Caudill (1994). Comparing Lad­
der Logic Diagrams and Petri Nets for Sequence Controller Design Through a Discrete
Manufacturing System. IEEE Trans. on Industrial Electronics vol. 41, no. 6, pp. 611-
619.

[Zhou and Leu, 1991) Zhou, M.C. and M.C. Leu (1991). Petri net modeling of a flexible
assembly station for printed circuit boards. Proc. IEEE Int. Conf. on Robotics and
Automation pp. 2530-2535.

[Zhou et al., 1989) Zhou, M.C., F. DiCesare and A.A. Desrochers (1989). A top-down ap­
proach to systematic synthesis of petri net models for manufacturing systems. Proc.
IEEE Int. Conf. on Robotics and Automation pp. 534-539.

www.manaraa.com

6

Modeling and Simulation of Combined
Discrete Event-Continuous Systems

Using DEVS Formalism and Object-Oriented
Paradigm

M TEGGAR and R. SOENEN
G.I.L -LAMIH UVHC
BP 311 , Le Mont Houy ,59326 - Valenciennes Cedex
Tel.: 27.14.13.47, E-mail: teggar@univ-valenciennes.fr

Abstract
This paper presents an approach to a simulation-based design methodology and is motivated by
the need to provide models representation schemes and simulation software tools for combined
discrete event-continuous systems. Our approach is based on an extension of the DEVS
(Discrete EVent System Specification) introduced by Zeigler, to include a combined discrete
event-continuous systems. We show how the interactions between the discrete-event part and
the continuous part and their consequence on the system behavior can be expressed. By
employing the Object-Oriented paradigm, the extended model is implemented as an abstract
class, in which the methods describe the model's behavior and data represent its variables.

Keywords
Modeling and simulation, combined simulation, discrete event simulation, continuous
system simulation

1 Introduction

In addition to discrete event models and continuous models, combined discrete-event­
continuous modeling and simulation is finding ever more application in the analysis and design
of complex manufacturing systems. A lot of complex systems, such as steel-making,
metallurgy, chemical industry ... , involve both processes which are easily described by
differential equations and processes which are better described by models whose changes in
state occur at discrete instants rather than continuously in time.
Classical approaches to simulation typically use:

www.manaraa.com

Modeling of combined discrete event-continuous systems 59

differential equations based models and frequency models for continuous systems
(continuous states, continuous time),

- state-transition, automaton and Markovian models for discrete-time and discrete-events
dynamic systems.

Unfortunately, these different models are incompatible because they deal with variables which
don't belong to the same mathematical space, and the time variable is not used in an identical
manner.
In fact, the same physical system may be modeled in an entirely continuous or an entirely
discrete fashion depending on the modeler point of view and the duration for which the system
will be observed. However, many works, (Wang, 89) ,(Cellier, 79), (Fahrland, 70), show that
there exist classes of problems which can not be modeled satisfactorily by either a purely
discrete or a purely continuous formulation. And the choice between the two points of view is
not always easy, since any system optimization study must be global and the continous part and
the discrete part of a process are often closely linked (Caristi, 91).

Although many formalisms have been developed to study, on the one hand discrete event
dynamic systems and on the other hand, continuous system, there is no formulation that meets
them all. Indeed, each of these various formalisms can be viewed as offering a potential
application benefit based on the particular form of abstraction implicit in its "world of view".
However, since reality does not usually constrain itself to one such "world view", the need to
formulate representation schemes which allow to bridge the gap between the two description
form becomes essential.

Two main approaches to the modeling of combined systems have recently emerged :
- defining a single formalism which encompasses the discrete event and continuous behavior

and which uses a homogeneous model structure (praehofer, 90, 92) (Zeigler, 89),
(Buisson, 93)

- using a specific formalisms for each class of system components and defining an
appropriate interface between them (Stiver, 93) (Antsaklis, 93) (AlIa, 94).

The DEVS formalism, initially developed for formalizing simulation models of discrete event
systems to be simulated, supports an open approach for the exploration of new simulation­
based representations for many classes of systems. It provides a mechanism for the
specification of simulation models in a modular and hierarchical manner and represents an
alternative to the traditional worldviews of discrete-event-simulation languages.

To shed some light on the DEVS formalism (Zeigler, 76), a conceptual framework underlying
the formalism is first described. We illustrate how basic models are specified and how these
models are connected together in hierarchical fashion to form complex models. Then we show
how continuous states are introduced to extend the DEVS expressibility to combined discrete­
continuous systems. Thus, the extended scheme represents both types of system and the
interactions between them in the same modeling framework.

After developing a mapping ofthe extended scheme onto a generic description so that classes
of objects form a taxonomical hierarchy in which they are arranged according to their degree
of generality, we describe an implementation of the simulation strategy using the abstract
simulators principles (Concepcion, 88) applied to discrete event-continuous simulation.

www.manaraa.com

60 Software Engineering for Manufacturing Systems

2 THE DEVS FORMALISM

DEVS (Discrete EVent System Specification) (Zeigler, 76, 84, 87) is a set-theoretic based
formalism that provides a system theoretically grounded means of expressing hierarchical and
modular discrete event simulation. It is the shorthand formulation needed to specify systems
whose input, state and output trajectories are piecewise constant.

2.1 Basic model

In this formalism a basic model (called atomic model) is defined by the structure:
M = <X ,S ,Y, Oint ,Oex(' ;\.., ta >,

where
X = set of external input event
S = set of sequential states
Y = set of output
Oint : S~ S is the internal transition function
Oex(: Q x X ~S is the external transition function

where Q = { (s,e) Is ES , O<S£ gars) } is the total state set
;\.. : S ~Yis the output function
ta : S ~RQ+ the time advance function.

There are two kinds of events; external events (input events) and internal events which are time
scheduled events. For each state s the time advance function ta , which is a mapping from state
space S to positive real numbers, defines the time interval to the next internal event. When this
time given by tars) has elapsed, an internal event occurs. The system produces an output ;\..(s)
and the internal transition function specifies the next state Sf = Oint (S) to which the system will
transit. If an external event (an input) occurs at elapsed time e which is less than tars) time
units, then a new state Sf is computed by means of the external transition function O""t (s, e,x).

2.2 Multicomponent Model

Several atomic models can be coupled to form a multicomponent model defined by the
structure:

DN= <D, {M,}, (I,); {Za,rJ, select>
where
D = set of component names,
For each a. inD

Ma = the component model
fa ~ D set of influences of a.
and for each ~ in fa

Za,~ is the a.-to-~ output translation function

select : 2D ~ D is the tiebreaking selector function. It selects a component from the
imminent components having the minimum next event time. This component is then
allowed to execute its next event transition.

A coupled model DN can be expressed as an equivalent atomic model and can itself be
employed in a larger coupled model. This shows that the DEVS formalism is closed under

www.manaraa.com

Modeling of combined discrete event-continuous systems 61

coupling and hence the construction of modular hierarchical models is possible and formally
well defined.

3 EXTENDED DEVS EXPRESSIBILITY TO CONTINUOUS STATES
SYSTEMS

In this section, we introduce an extension of DEVS formalism to combined systems whose input
and output are eventlike. The systems contain both discrete states and continuous states and
the dynamic behaviour of the continuous components can be described by differential
equations.

3.1 Example: The Bottle-.filling process

Consider a cylindrical tank with two threshold sensors at two levels called L (Low) and H
(High) and a bottle conveyer as it shown in the figure 1 below;

iv

H OYer-
Tank-filling rr;::::::j~=

ON ON •••• !!!!!\!!

level 1---4
ow ON fiIIod

OFF ow ~

~6 it Mo'
Conveyer _B-P = ~~~ispracnl

Figure 1. Bottle -filling example.

The filling process receives three types of event:
ell I e12 : Open jntlux _valve! Close_influx _valve ;
~l len : Stop_on_errorl Re-Start; (from the higherIevel Control System.)
~ : Bottle_Arrived; (from the conveyer when an empty bottle arrive under the

tank's outlet.)
And it transmits
- an event 01 =move_conveyer when a bottle is full (to the conveyer)
- and two events 02 =Underfilled and 03 =Overfilled (to the higher level control system.)

Figure 2. A coupled discrete event-continuous system.

www.manaraa.com

62 Software Engineering for Manufacturing Systems

When the filling process receives an event ell the influx valve (iv) is fully open and the tank is
filled with constant flow Fin. iv is closed when el2 is received.When it receives an event e22;

this means that there is an error (bottle overflow, a failure of sensors, a leak in the tank, ...) then
the filling process is stopped. Event e3 indicates a bottIe-arrival, then the bottIe-filling-valve
(bjv) is fully open; the flow out is given by F out (t) = R /(t) (R is the fill rate, some positive
real number and I (t) is the level of the liquid in the tank). When the volume of the bottle is
reached the bjv is closed and an event move _conveyer is sent to the conveyer.

3.2 Extended DEVS Model

The example shows that, in addition to the sequential states, the total state contains some
continuous variables (Figure 3) (the level of the liquid in the tank and the volume out in the
filling process).

~r ~.I,-:--:=-:---~=:---:--,e :~I ~r ~
Figure 3 - Combined Discrete event-continuous system.

Moreover, two types of internal event are distinguished:
- The state-events, which are not time scheduled events but are caused by the

continuous changes of the continuous states.
- The time events, which are time scheduled as in the DEVS definition given above.

A Combined Dynamic System is a tuple < x, Q, Y, E, I) , 7" , A. , a , ta >
where:
• X is a finite set of input events and Y is a finite set of output events
• E is a finite set of internal state-events;
• Q is the state set range defined by : Q = S x Rn x R+ , S is discrete state set and Rn is a
continuous state-space;

Q = {q = (s , v, e) Is E S, V E R", e E R;, }

• The conditions of occurrence of internal state-events are given by the function a which
associates at each es E E a predicate P(q) where q is the total state variable and p(q) is a
logical expression

Whenever the condition P(q) becomes true, an internal state-event occurs.
• An internal time event e occurs if the condition e ~ ta (s) becomes true
• I) is the discrete state transition defined by the two functions I)int and I)ext as follows :

I)..., : Q x X -+ Q;
I)lot : S x EU{e} -+ Q;

• if is the differential equation defining the rate of change of the continuous state variables;
• A. : S -+ Y is the output function

www.manaraa.com

Modeling of combined discrete event-continuous systems

3.3 The Filling-Process Model

For the filling process described above, the sets X , Yare defined by:
X = {ell' e12, e2l , e22 , e3 };

Y= {oI, 02,03 };
r L l
I H I [I]

Let s = l btv J denote the sequential state and v = v out denote the continuous state
w -

phase

63

where: L, H, phase E {ON, OFF}; phase = OFF if the system is stopped; ON otherwise;
bjv, iv E {O, 1 } , the two variables take the value 0 when the corresponding valve is

closed and I if it is fully open

the total state set is
Q = {q = (ST / ,e)} = S x R2 X R;,' S = {ON, OFF} x {ON,OFF} x {O,J) x {O,I) x {ON, OFF};

The set E of the state-events contains five events: E = { es}, eS2 ,es3 , es4, ess }
and cr is given by :

e,} H /~ HIGH

e" HI < HIGH

e" Hl>Low
e" HI S;LOW

e" H v_out ~ B_ volume

tars) = 00 , \;j S ES No time event
The external transition function Bext is :

((L, H, bjv, 0, ON), v, e, ell) H ((L ,H ,bjv ,1, ON), v, 0)

((L, H, bjv, 1, ON), v, e, e12) H ((L ,H ,bjv ,0 ,ON), v, 0)

((L, H, bjv, iv, ON), v, e, e2J H ((L ,H ,0,0 ,OFF), v, 0)

((L, H, bjv, iv, OFF), v, e ,e22) H ((L ,H ,0 ,0 ,ON), v, 0)

((L, H, 0, iv, ON), v, e, e3) H ((L ,H ,I ,iv ,ON), v, 0)
the internal transition function is defined by :

((L,OFF,bjv,iv,ON),e,J H ((L, ON,bjv,iv, ON), v,o)

((L,ON,bjv,iv,ON),e.,) H ((L,OFF,bjv,iv, ON), v,O)

((OFF,H,bjv,iv,ON),e,,) H ((ON, H, bjv,iv, ON), v,O)

((ON,H, bjv, iv, OFF), e,,) H ((OFF, H,bjv,iv, ON), v,O)

((L,H,J,iv,ON),e,,) H ((L,H,O,iv,ON),(l,O),0)

The differential equations are given by :

1 dl = ~. [F . - R /(t) b f j. where TS is the cross - sectional area
dt TS w·1_ V • . - _v . of the tank

:f = dv out
~=RI(t).b_f _v

www.manaraa.com

64 Software Engineering for Manufacturing Systems

the output function:
').. (OFF, OFF, bjv, iv, ON) = (D2, H_L_C); Tank_underfilled(to Higher level

')..(ON ,ON, bjv,iv,ON)=(03,H_L_C);
').. (L , H, 0, iv, ON) = (01 , Conveyer) ;
').. (s) = <I> ; for the other cases (<I> = no event)

control)
Tank_overfilled (to Higher level control)
move_conveyer (to CONVEYER)

4 SIMULATION WORLD VIEW

The Object-Oriented Concept is not only a useful programming style and an efficient way to
organize software systems, but it is also regarded as a powerful paradigm that can serve as a
useful way to express computational models for large, complexly interacting systems.
Encapsulation, inheritance, abstraction and evolution of individual objects support
concurrency, incremental modifiability and reusability of models. Thus, it provides a common
basis that can be used to implement modular simulation programs.
The simulation strategy for DEVS models is based on the abstract simulator principles
developed by Zeigler et al (Zeigler, 84) (Concepcion, 85, 88) (Kim, 88, 89). The abstract
simulator includes the algorithmic interpretation of the dynamic behaviour implicitly specified
by the model.
The abstract simulator has the same structure as the hierarchical structure of the DEVS
models. Thus the model can be directly transformed into an executable simulation program
using the object oriented concept. A full explication and the class specialization hierarchy are
given in (Zeigler, 90).

ENTITY

~ .. ~
MODELS PROCESSORS

AT~C ~LED /C~
SIMULATORS ROOT-COORDINATOR

Figure 4. The abstract classes hierarchy.

The root class ENTlTI provides general definitions for data and methods of general utility. The
class MODELS which in turn is specialized into more specific classes ATOMIC and COUPLED
provide the basic constructs needed to specify a model's variables (Instance variables) and its
behavior (methods). The class PROCESSORS and its subclasses implement methods to carry out
the simulation and compute the states and outputs trajectories.
Using the same methodology, we have developed an implementation using the C++ language
according to the class hierarchy shown in figure 4 (Teggar, 96). Since these classes are defined
as abstract classes, they are implemented in generic form as template classes. The methods
expressing a specific behavior of user model are defined as virtual functions with template data
types.

www.manaraa.com

Modeling of combined discrete event-continuous systems 65

4.1 The class combined model

The inheritance mechanism supports incremental specification and composition of behaviour so
that user methods are defined as subclasses, which inherit the code representing data and
behaviour common to the other models. The class for Combined models is a specialization of
the class ATOMIC in which we can add new instance variables for the continuous states and new
methods:
- sigma: which returns a state event identifier when the associated condition becomes true and

o otherwise
- derivative: computes the derivative values of the continuous states.

Using pseudo-code, we describe the class of the filling process model as a subclass of
combined models.

class Filling_Process CbmbiDed_mode2
c.lassvazs

LOW , HIGH
B volume

IDstVars

: real
: real

L ,H ,phase : [ON , OFF)
bfv, iv 0 .. 1
1 ,Dl v out ,Dv_out real
e : real

Int_1'zaDS (event es)
case es of

J:zt: t:raDS (event z)
case x of

end

es1 if (H=OFF) and
(phase = ON)then

H := ON;
e := 0

else error
es2 if (H=ON) and

(phase = ON)then
H := OFF;
e := 0

else error
es3 if (L=OFF) and

(phase = ON)then
L := ON;
e := 0

else error
es4 if (L=OFF) and

(phase = ON)then
L := ON;
e := 0

else error
es1 if (bfv=l) and

(phase = ON)then
bfv := 0;
e := 0
v out := 0

else error

end

ell : if (phase = ON) and
(iv = 0) then

iv := 1
e := 0

e12 if (phase = ON) and
(iv = 1) then

iv := 0
e := 0

e21 if (phase = ON) then
iv := 0
bfv := 0
phase := OFF
e := 0

ell if (phase = OFF) then
phase := ON
e := 0

e3 if (phase = ON) and
(bfv = 0) then
bfv := 1
e := 0

Deri vati VII ()

Dl :=«Fin*iv)-(R* 1 * bfv))/TS
Dv out := bfv * R * 1

end

www.manaraa.com

66 Software Engineering for Manufacturing Systems

Sigma ()
if (1)= HIGH) then

return (esl)
if (1< HIGH) then

return (es2)
if (1) LOW) then

return (es3)
if (1 =< LOW) then

return (es4)
if (v out >= B volume) then

return (es5) -
return (0)

end end

if (L = OFF) and (H = OFF)
and (phase = ON) then

send (02 , H L C)
if (L = ON) and (H -= ON)

and (phase = ON) then
send (03 ; H L C)

if (bfv = 0) --
and (phase = ON) then
send (01 , CONVEYER)

The specialization gives the specific definitions by overriding the virtual methods Int_Trans,
Ext_Trans and Output _Func, of the class atomic and Derivative and Sigma of the class
Combined model

4.2 Abstract simulator principles

The abstract simulators are defined as the interpretation of dynamic behaviours specified by
models. Essentially, they are objects whose methods are an algorithmic description of how to
carry out the instructions implicit in models to generate their behavior. Simulators are assigned
to handle basic models in a one-to-one manner. The whole simulation program is then
represented by a network of such (model, Simulator) pairs.
There are two types of abstract simulator: Simulators and Coordinators; assigned to handle
atomic-DEVS models, and coupled models in a one-to-one manner respectively. Simulation
proceeds by messages that carry data and synchronization information passed among the
abstract simulators.

4.2.1 The. Abstract Simulator of Discrete Event System

The operation of an abstract simulator involves four types of messages: *, x, y and done­
messages. It consists of two methods that handle four main variables :

(*, t)

(x. t)

time ofLast-even! (tL)

Figure 5. Discrete Event Simulator

- s : is the sequential state variable,
- e : the elapsed time since the last state transition,

(y. t)

(d. tN)

www.manaraa.com

Modeling of combined discrete event-continuous systems 67

-tL : the time ofthe last event and
-tN : is the time ofthe next internal state transition.
The algorithm of the abstract simulator is divided onto two parts : One method is activated on
a reception ofan (x,t) message, and the other one corresponds to an (*,t) message.

When receive an input (x,t)

end

if tL <= t <= tN then
e := t-tL

5 := Oext (5 e x)
tL := t
tN := tL + ta (s)
send (d,tN) to co-ordinator
else error

When receive an input (* ,t)

end

if t = tN then

y:= A. (5)
send (y,t) to co-ordinator

s := Oint (5)
tL := t
tN := tL + ta (s)
send (d,tN) to co-ordinator
else error

In (Zeigler, 1984), the abstract simulator was shown to satisfy the criterion of correct
simulation of a DEVS model. The *-message indicates that an internal event shall be executed
and is transmitted to the imminent component. If there are more than one imminent
component, the tie breaking function Select is used to select one of them. When a *-message is
received by a simulator, it sends its output as a y-message and carries out the internal transition
in the associated DEVS model. The output (y-message) is sent back to the parent coordinator
which consults the external output coupling and the internal couplings to obtain the addresses
to which the message should be sent as an x-message. When a Coordinator receives an
x-message, it consults the external input coupling to generate the appropriate x-message for
the subordinate influenced by the external event. When a Simulator receives an x-message, it
executes the external transition of the associated DEVS. A done-message indicates the
completion of the state transition and contains the time of the next internal transition.

4.2.2 The Abstract Simulator for Combined Model

The simulators described in the preceding paragraph, are defined to handle discrete event
systems. So to simulate a combined discrete event-continuous state system, we must define a
special simulator which has methods to compute the continuous state values during the
observation time.
The extension retains the basic structure of the abstract simlators. Since the state-events are
not time scheduled events, a simulator for a combined model can not determine the time of the
next internal transition. To solve this problem, we use a sampling method which predicts the
occurrence of an internal event with an estimated time tNe. If a state event occurs at time
t < tNe, a time warp mechanism is used to correctly simulate a muIticomponent model. The
mechanism to rollback an object is the heart of the time warp. The time warp exerts no effort

www.manaraa.com

68 Software Engineering for Manufacturing Systems

to ensure that messages are delivered to an object in increasing timestamp order. Instead, the
simulation proceeds on the assumption that there will be no stragglers (messages with time
stamps less than the local time). But if a straggler should arrive at time t , the object must roll
back to the time t and cancel all the side effects that occurred as a result of processing
messages with timestamps greater than t (Jefferson, 85 ,87, 89).

When receive an input (x,t)

end

if tL <= t <= tN then
compute the continuous state and update e from tL
until t or tE the time of state-event
if e = t -tL then

s := Oext (s e x)
tL := t
tN := tL + ta (s)
send (d,tN) to co-ordinator
else

send (anti-message, tN)to co-ordinator
send (d,tE)to co-ordinator

else Rollback (Time Warp mechanism)

When receive an input (* ,t)

end

if t = tL then

y:= A. (s)
send (y,t) to co-ordinator

s := Oint (s)
tL := t
tN := tL + ta (s)
send (d,tN) to co-ordinator
else if t = tN
compute the continuous state and update e from tL
until t or tE the time of state-event
if there is a state-event (tE)

y:= A. (s)
send (y,t) to co-ordinator

s := Oint (s)
tL := tE
tN := tL + ta (s)

else Rollback

Object • Model

I_v_ I
ExI_~()

c.nRoolDo

(""~())
Camd

!e -" ... ()
(~"MU'''''O)

0 --

(Julpu,-FImc ())
x __

_ofModol

I LocoI1lmo....--

(NlIIIIOIicoISoMr

(---

(--
Figure 6. A model-Simulator pair.

I

I
)
)

J:::

www.manaraa.com

Modeling of combined discrete event-continuous systems 69

Note that:
The messages exchanged among the abstract simulators are timestamped.

- When a simulator of combined model receives an (x, t) or (* , tNe) message, before
executing the external or internal transition it updates its local clock by employing the
solver based on a numerical integration method to compute the continuous states value
step by step and the event detector method to check the value of the sigma function. If a
state event occurs at time tN < tNe , the simulator transmits an (* , tN) to the parent
coordinator (figure 7).

- When a Coordinator receives a message with a timestamp tN less than its local clock, it
releases the rollback mechanism by means of the antimessages, and start again with the
new value IN of the internal state-event.

(*, t)
Coordinato

Parent (*, t)
(d, tN) Coupled-Model (x, t)
(x, t) Wait-list _(y,t)
(y, t) Nexl-event

-(d,tN)
Last-event

Figure 7. The Coordinator of Coupled Model.

4 CONCLUSION

A variety of paradigms are being actively explored to deal with systems where a large number
of discrete events and continuous dynamic behaviours are simultaneously important. An
extension of the DEVS formalism shows how it is possible to express models of combined
discrete event-continuous systems, so that the whole formalism guarantees the strength of the
theoretical based methods for simulation. By the bottle-filling process example, we have
illustrated that the proposed modeling framework makes a clear description of complex
combined systems possible. The object oriented paradigm provides convenient tools to carry
out this abstract forma1ism concept and improves the isomorphic relation between the model
and its representation in the simulation program.

REFERENCES

AlIa H. (1994) Les Reseaux de Petri: des Evolutions Particulierement Adaptees aux Systemes
Hybrides. in ADPM94, Les Systemes Dynamiques Hybrides.

Buisson J. (1993) Analysis and Characterisation of Hybrid Systems with Bond-Graphs. in
IEEE International Conf On Systems, Man and Cybernetics, Vol I.

Caristi J. and Sands D.C. (1991) Simulation of Epiphytic Bacterial Growth under Field
Conditions Simulation J..

Cellier F.E. (1979) Combined ContinuouslDiscrete System Simulation : Languages,
Usefulness, Experiences and Future Development in Methodology in Systems Modelling
and Simulation, Eds. B.P. Zeigler, M.S. EIzas, G.J. K1ir & T.I. Oren, North Holland Pub.,.

www.manaraa.com

70 Software Engineering for Manufacturing Systems

Concepcion AI.(1985) The Implementation of the Hierarchical Abstract Simulator on The
lIEP Computer. Proc. Winter Simulation Conf.

Concepcion AI. and Zeigler B. P.(1988) DEVS Formalism: A Framwork for Hierarchical
Model Devlopement: IEEE Transaction on Software Engineering, Vol. 14, NO.2.

Fahrland D. (1970) Combined Discrete Event Continuous Systems Simulation. Simulation 1..
Jefferson D. R and Sowizral H. (1985a) Fast Concurrent Simulation using the Time Warp

Mechanism. In Proc. SCS conf. on Distributed Simulation, San Diego.
Jefferson D. R (1985b) VIrtuel Time. ACM Transaction on Programming Languages and

Systems, Vol. 7, No.3.
Jefferson D. R, Backman B.and aI (1987) The Time Warp Operating System. 11th Symp.

Operating Systems Principles, Vol 21.
Jefferson D. R and aI (1989) The Performance of a Distributed Combat Simulation with the

Time Warp Operating System. Concurrency Pratice and Experience, Vol. 1, No. l.
Kim T.G. (1988) Knowledge-based environment for hierarchical modelling and simulation. Ph.

D. dissertation, University of Arizona, Tucson, AZ.
Kim T.G.and Zeigler B.P. (1989) ESP-Scheme: A Realization of System Entity Structure in a

LISP Environment. Proc. AI and Simulation Multiconference, SCS Publications, San
Diego.

Praehofer H. (1990) System Theoretic Formalisms for Combined Discrete-Continuous System
Simulation. Int. J. General Systems, Vol 19, 219-240.

Praehofer H. (1992) An Environment for DEVS-Based Multiformalism Simulation in Common
Lisp. Special issue on : Software Environment for Discrete-Event Dynamic Systems.

Stiver J.A and Antsaklis P.J. (1993) On the Controllability of Hybrid Control Systems. in 32nd
IEEE Conf. on Decision and Control.

Teggar M. (1996) Modelisation et Simulation des Systemes Dynamiques Hybride. These de
Doctorat de I'universite de Valenciennes et du Hainaut Combresis.

Wang Q. (1989) Management of Continuous Models in DEVS-Scheme: Time Windows for
Event-Based Control Masters Thesis, Dept. of Electrical an Computer Engineering,
University of Arizona, Tucson, AZ.

Zeigler B.P. (1976) Theory of Modelling and Simulation. J. Wiley NY. (Reissued by Krieger
Pub. Co., Malabar, FL, 1985).

Zeigler B.P. (1984) Multifacetted Modelling and Discrete Event Simulation. Academic Press,
London.

Zeigler B.P. (1987) Hierarchical, Modular Discrete Event Simulation in an Object-Oriented
Environement. Simulation Journal, Vol. 49:5.

Zeigler B.P. (1989) DEVS Representation of Dynamical systems: Event-Based Intelligent
Control. Proceedings Of The IEEE, Vol. 77, NO. l.

Zeigler B.P. (1990) Object-Oriented Simulation with Hierarchical, Modular Models. Academic
Press, London.

www.manaraa.com

7

Principles of CASE Tool design
for Automation Control

Dr. Wolfgang Brendel
infoteam Software GmbH
D-91 088 Bubenreuth, Am Bauhof4, Germany
phone +49-9131-78000, fax +49-9131-780050
e-mail100024.1231@compuserve.com

Abstract

Twelve principles which should be obeyed by every designer of CASE-tools for control
automation are postulated, in order to avoid that a post-modem computer scientist with fancy
ideas neglects the requirements of users who are much more conservative regarding taste,
attitude and practicability.

Much more importantly, PLC-programming has to be different from conventional software
development because of the different kind of people who are involved in that task. The
purpose of the following statements is to give some hints as to which principles should be
obeyed in designing a PLC-Programming system.

Giving examples from the implementation of the Open Development Kit, an interactive PLC­
programming support environment confonn to IEC 1131-3 , we also give guidelines as to how
to implement these principles in a real world environment. We close with first experiences
from several hundred users and give an outlook to further topics both in research and
development for the near future.

Keywords

IEC 1131-3, PLC, programming, CASE-tools, OPEN DK

www.manaraa.com

72 Software Engineering for Manufacturing Systems

1 INTRODUCTION

To enhance the perfonnance of the Software Engineering Process, it is required to shorten the
development cycle of new automation control software. This aim is achieved by introducing
engineering processes which apply different engineering methods in several phases of the
overall design and the development cycle. This is accompanied with the development of
CASE-Tools supporting these methods. Nowadays we have a huge bundle of design tools,
graphical editors, interactive workbenches, incremental compilers and on-line debugging
utilities with one major obstacle: the lack of common interfaces, ensuring a smooth transition
from design down to operation and ensuring reliability of an automated manufacturing system.

That's why we now have to pursue two objectives:

• to reduce the number of tools involved as far as possible and

• to standardize the interfaces between these tools.

The first target can be reached by incorporating tasks like code generation in design tools used
at an early stage of the engineering process, eliminating the need for the user to occupy himself
with compilers and generated code in detail.

To reach the second aim - to standardize interfaces between heterogeneous tools - is much
more difficult, because it requires the co-operation of tool suppliers who often are
competitors. Nevertheless we know from all sectors of engineering that international standards
are mandatory for technical progress. So there is no alternative but the standardization of
interfaces.

2 CASE-TOOL ARCHITECTURE FOR CONTROL AUTOMATION

Which CASE-Tool design will meet these objectives? The ultimate judge will be the engineer
who has to perfonn a most complicated task with a fixed deadline: the day the manufacturing
system he designs has to be up and running!

In order to design a flexible architecture of software tools for control technology, infoteam
made an analysis of user requirements in the field of PLC-programming and control
automation. Based on these results, we found out that principles can be stated for the
development of CASE-Tools which shall ensure that a software tool will match the
requirements of the end-user and, at the same time, will fulfill the two overall objectives as
mentioned above.

The key to an open architecture for control automation tools is to define a common
framework in which heterogeneous tools can cooperate and to develop an Application
Programmer Interface - the so called Open-Software-Link "OSL" used by developers of tools
for automation control programming.

The Software-Industry market is dominated by de facto industry standards in areas like
operating systems and database technology as well as programming languages and compiler
design. This eases exchange of infonnation and technology.

www.manaraa.com

Principles of CASE tool design for automation control 73

Industrial Control Automation is one of the few exceptions: Until recently there was no world­
wide standard at all. Each PLC-manufacturer had its own style of programming tools and even
worse, depending on the country of the company each control system was programmed in a
different programming language:

• in France, Spain and Italy using GRAFCET
• in the United Kingdom and the United States using Ladder Diagrams
• in Germany, Austria and Scandinavia using Function Block (FB) Diagrams
• and in all countries some dialects of Instruction List and other languages.

Principle 1:
Don't try to convince the user of your favourite programming methodology or
programming language. Support the method or language the user wants to use.

Fortunately the emerging international standard IEC 1131-3 defines all five languages in a
consistent way. Moreover, the user and vendor organization PLCopen defines compliance
rules that have to be fulfilled by the corresponding tools implementing that standard. This is a
prerequisite for the standardization of widely accepted interfaces between CASE-tools,
interactive editors, compilers, MMI-tools and a common database definition all used
throughout the life-cycle of an Industrial Control Automation Project.

The lack of standardized interfaces and common data definitions led to the circumstance that
the wheel is reinvented more than once in such an automation project. But even worse,
mistakes are introduced and lead to poor quality and schedules which are overdue in most
automation projects. Because there is no way to cooperate between tools from different
vendors each company invented their own programming support environment.

Users are therefore adamant about the use of standard PCs for programming and hail the
standardization of the programming languages by IEC 1131-3 as the breakthrough they have
been waiting for.

The logical consequence is the demand for new manufacturer-independent programming tools
in accordance with IEC 1131-3, which can be used on any PC to produce machine code for
(almost) every PLC and put it into operation.

Working on this assumption and years of experience, the Open DK portable programming
system was developed following the principles:

• Using standardized components, such as editors, compilers and management tools
• Adopting components where different requirements ask for different solutions
• Filling in missing pieces by developing special tools or enhancing already existing ones.

There are clearly defined interfaces between all parts of the software, so that they can easily be
exchanged for new versions because the interface specifications are upward compatible. In this
way, new applications can be added to the system at any time.

www.manaraa.com

74 Software Engineering for Manufacturing Systems

fl L_
~

D
F80

PTHerforms
Mt ___

0 ~
eft

• 0 5 Opon8ndge

III

Figure 1: Architecture of Open Development Kit

The majority of PLC systems today, however, provide little or no support for the features of
the IEC 1131-3 standard. Tools like those of the Open Development Kit can therefore only be
ported to a particular family of controllers by adapting or extending their functionality.

Principle 2:
Provide for methods or options to adopt the system to the users needs.

Even manufacturer-independent tools like Open DK need manufacturer-specific code
generators and ON-LINE drivers to adapt them to suit the conditions in existing systems.
Since this customizing process always affects the manufacturers' own interfaces, porting is
only practicable with their co-operation. The advantage is that the independent tools are
exactly matched to the control system and perfect functioning is guaranteed by the
manufacturer.

3 SUPPORTING THE REUSE OF EXISTING SOLUTIONS

In the past, the various controller families from each manufacturer all had their own
progranuning units with specially developed progranuning tools. Changing to a different
controller meant investing in new software development equipment each time and
progranuners had to spend their weekends poring over a new manual and getting to grips with
new terminology and worse still a new progranuning language or at least a new dialect.

www.manaraa.com

Principles of CASE tool design for automation control 75

In switching over to a different supplier, the user has to rewrite large parts of the application.
This and the fact that there is no common education in using these tools separated the industry
even more.

Principle 3:

Preserve upward compatibility with existing user source code. If this is not
possible, supply tools for porting application software to the new environment
without loss of information.

The essence of mechanical or process engineering technology are the algorithms used for
solving frequently recurring problems. To enable the engineer to employ the same method
repeatedly within an application, IEC 1131-3 makes provision for the creation of instances.

The declaration of an instance of a function block must not be confused with the invocation of
a function block. Creating an instance of a controller FB is the same as using several hardware
modules of the same type in an automation solution.

Defining an instance is simply the creation of duplicates with identical functions. The
introduction of the standard has vastly improved the conditions for extending the development
of reusable application software to the PLC sphere.

Principle 4:

Support at most the reuseabilty of existing applications to an extent as far as
possible. The productivity of programmers depends to a large extent on the
degree to which he has access to solutions already developed.

A program organisation unit (POU) should be declared as a function block if it is a program
part which is frequently needed and required to be reusable. An FB can have several input and
output parameters and - unlike a function - can also store internal data. The values of the
output parameters and internal variables are retained when an FB is called. For this reason,
invocation of an FB with the same input parameters does not necessarily always yield the same
output parameters.

Direct access to the inputs and outputs of a PLC is not possible within an FB. This makes FBs
hardware-independent. Any FB that has already been declared can be used in the declaration of
another FB or program.

An equally important feature compared to function blocks is the concept of functions! The first
parameter of a function is the intermediate result of the current calculation and it always yields
a new intermediate result. If the function has exactly one parameter, it cannot be distinguished
in practice from an instruction because IEC 1131-3 does not stipulate parentheses for the
parameters of functions.

This facility for apparently extending the instruction set of the controller is available not only
to the manufacturer but also to the user. Therefore the reusability of solutions may be
enhanced defining a functional substitute for a missing instructions on a target systems which
doesn't support the full functionality despite the fact that there might be a slight loss in
performance.

www.manaraa.com

76 Software Engineering for Manufacturing Systems

Clearly, the most important task of the Project Manager is to help the user manage
configurations, resources, programs, function blocks and functions. But what about all the
other information which is generated during editing, compiling, generation of target code and
downloading?

We have the philosophy that the casual user should not be burdened with worrying about
where to store those files. This task should be devoted to the Project Manager utility. On the
other hand, the experienced user, who has several incompatible PLCs to program will use the
same FBs and functions and as far as possible, only generating code for different targets out of
the same sources. This user needs a sophisticated tool to support his task.

Furthermore with the emerging standard there will be numerous suppliers of function block
libraries which are used as predefined functional units already tested and approved. Using not
only its own source but also the geniality of numerous engineers will greatly enhance the
productivity.

Principle 5:

Provide for the possibility of third party FuncnonBlock-Library support.

The project manager is a central graphical tool which provides an extremely user-friendly,
efficient interface for managing the programs, functions and function blocks of a project.
Using the project manager the user can call individual blocks for editing, print them or transfer
them to the controller. It also assumes central control of access to these structures by other
tools.

, ,
• froJect

i
• proJekt.sys

"
Edit ~enerale

_train
I

Help 0

i
t:::J kompo.sys

Figure 2: Enhancing reusability through a Project Manager

One of the major tasks of the Project Manager is to support the user by structuring his project
and to manage program organization units in an efficient way. Project data can be accessed via
an open interface, which can also be used by other programs.

www.manaraa.com

Principles of CASE tool design for automation control 77

The project manager is used for creating and structuring projects. The actions performed with
the project manager bear an outward resemblance to actions which can also be performed at
operating system level or using a file management program. When you create a project
containing branches, a directory with sub-directories is created.

The entire compiling and linking procedure for a complete project can also be controlled using
the project manager.

4 DESIGNING THE USER INTERFACE

Surely five programming languages are enough for one subject? Five languages probably, but
five editors are definitely not sufficient. In fact, different types of applications call for different
versions of the editors, tailored to the special requirements.

This is the reason why we offer two editors for FB-Programming: A configuration oriented
CFC-editor and the FBD-editor which was constructed for highly interactive programming.

What is common to all implementations of interactive editors is that all are designed with the
highest possible comfort for the user in mind. Comfort means that each task the user wants to
perform has to be implemented in a way that user interactions are minimised as far as possible.
To phrase it more generally:

Principle 6:

Design for easy modifICation of designs and programs because 80-90% of tasks
are changing already written programs and only 10-20% is writing new code or
designing new programs.

Figure 3: Moving function blocks with autoplacement and autorouting

"

The solution the developer provides to the end user can be easily measured: The cost function
is defined as total number of keyboard hits and mouse movements necessary to perform a

www.manaraa.com

78 Software Engineering for Manufacturing Systems

given set of alterations on an already existing program. The best implementation minimises this
cost function.

Studies of PLC programs in industrial engineering have revealed that only between 10 and
20% of all control programs are developed from scratch. The majority (80 to 90%) are at most
updated. This means that most of the time the editors of a programming system are not used
for writing or developing programs, but merely for updating existing programs.

Just compare the systems currently available! How many user actions does it take to move the
function in the example above to different position? Only three or four user actions are
necessary. Very few of the CAD-oriented systems available on the market can manage with
less than 20 or 30 actions. Unfortunately, it is not possible to assess the quality of a
programming system at first glance.

Much harder to achieve and even more complicated to judge is the requirement of designing
sophisticated engineering tools for the casual user or sometimes untrained personnel.

Principle 7:
Design a system with a predictable behaviour. Assure the user that each action
that he takes will be checked as soon as possible. Make sure that he can rely on
the fact that the system will either accept his instructions or reject them
immediately.

• I.

• fi le Edit Symbols U lro· •
.Qptlonl ~ndow

C ODDS

Condillon for d

••
Figure 4: Automatic checked graphics in ladder diagrams

The method of graphical program development by means of repeated transformation of valid,
correct graphical structures has been used successfully since the beginning of the 80s. Why
should users settle for less today?

www.manaraa.com

Principles of CASE tool design for automation control 79

The graphical ladder diagram editor only accepts input operations which result in correct
networks. User entries are inunediately checked as to whether they can be represented in
graphical fonn and unacceptable entries are rejected. This ensures that the current network is
always graphically correct.

Programs and blocks entered in the graphical languages can also be displayed and tested in IL.
Conversely, programs written in IL can also be represented in a graphical fonnat as far as the
graphical facilities allow. This fact is due to the incremental compiling method by which all
actions of the user are compiled in transfonnations on a language-specific working set. The
effect of this transfonnation is shown to the user by the visualisation module.

--.,.,.,.
!

CorrPedby
compile< trcrn end

Editor
methods

IL
LD
FBD
SFC
ST
Var.

Figure 5: Graphical transfonnation using incremental compiling

The same goes for the introduction of the mouse for programming. Users demand from
experience that all tool operations should be possible from the keyboard.

Principle 8:
Design the system to be used with keyboard-actions and allow for mouse­
control. Not vice versa! With the widespread use of windows oriented systems
this feature is not fancy any more, nevertheless it is still important.

As can be seen with the example of inserting shortage between two rungs, an incremental
system does most of the graphical rearrangements by itself!

The graphical editors all employ the operator input concept: Mark (object or area) and then
perform the action. This speeds up inputs and alterations considerably and also enables inputs
to be made exclusively on the keyboard as well as by using the mouse.

www.manaraa.com

80 Software Engineering for Manufacturing Systems

When marking program parts it is possible in both graphical and textual editors to select single
objects, whole areas or the entire program. In the graphical editors, insert operations with
objects selected in this way are always subjected to a syntax check.

For single marked graphical objects the method of pre-defined editor actions is used, whereby
certain default actions - e.g. double click or space bar - trigger standard operations on the
object concerned. These graphical elements with attributes make it easy, for example, to
negate or insert a contact or change it into a labelling field. .

Full support is provided for the editing functions of the standard Edit Menu (Cut, Copy, Paste,
Find, Replace) and the use of the clipboard. For the graphical languages the correctness of the
syntax of the program is guaranteed in operations using the clipboard.

All users of interactive systems know that a little bit of uncertainty or selecting the wrong
option like "cut" instead of "copy" can make the work of some hours all in vain. Modern
systems therefore provide sophisticated aids for undoing and redoing actions to recover from
the mess we may create under pressure (like writing this article late in the evening).

Principle 9:
An untrained user fears that an action he takes will lead to disastrous effects.
Make sure that each action that has a chance of loss of work already done has
to be checked or at least can be made undone.

5 ON-SITE DEBUGGING MADE EASY

For testing and start-up, programs and data need to be exchanged between the controller and
individual tools. The function of the communication manager is to present a universal view of
the controller, i.e. to conceal the actual PLC from the tools. This enables the tools to be
manufacturer-independent and ensures an open and efficiently adaptable interface to the
controller.

These logical connections are used, for example, for transferring current 110 values via the on­
line interface from the controller to the editors or for loading the PLC program into the
controller for remote control. Depending on the functionality of the connected remote device
there exist several features for remote control of a PLC:

• Remote control (start, stop, warm restart)
• PLC status display: RUN, STOP
• Program name and versions
• Program comparison PC <> PLC
• Status information
• Monitoring of inputs/outputs
• Force/Set via direct 110

www.manaraa.com

Principles of CASE tool design for automation control 81

Using simulation it is possible to run the program in different cycles and to debug the program
by a stepwise execution without any hardware attached. This gives a powerful possibility for
"black-box-testing" the function blocks and the program.

A more typical example is the execution of an application while the process and the controller
is up and running. Monitoring of parameters of a Function block in a graphical environment
can be done in real-time without disturbing the performance of the PLC. Some purists argue
that this is not true engineering style but such is life!

Principle 10:
A typical control-application is not designed, it is engineered. That means it is
programmed on the plane to the facility where it will be installed. Because real
application development is done by trial and error, a programming system must
support experimental programming with continuous improvement.

To support the user in this engineering task we have to provide tools which allow a better
recognition of binary transient signals and have the possibility to have a powerflow display of
binary variables. This is already known from debugging ladder diagrams and a proven
technology which greatly simplifies the recognition of what's going on with the process.

It is important to note that such features could not be substituted by pure monitoring of global
variables, because the parameters depend both on the calling environment (the program which
calls the FB) and the actual instance which is called (the duplicate of a FB which has a unique
internal data storage):

II ii="rt-~!l1 n g AAze6tc. til ..
OG'
OG'

CAL GOGl , .. 101101 .'1
Goo. ,"_PI :- 1Zl ... I 32 1011011 P2JN1_P2 :- 0UTl_P1.
007 27 oonoo P2.1N2_P't :- CMnl_PI
001 I
OM
III

CAL III .ZI
III 32 lonoo Vn_" :-tI PI.ot.m_Pl.
III 21 001100 INZ_Pl :'" PI .OUTZ_P1
.U I
liS

2~101'0' 1_ittl ;' OUT_Pl
I .. I

""
Ildtteez~ 0 0-. .Z.I~ .. rt:tcllC Oyofil..tkrcn

Figure 6: Online monitoring instances of function blocks in a running process

6 DOCUMENTATION OF APPLICATIONS

A PLC is part of the machinery in which it is integrated, it is not a computer. Because a
machine lives from 5 to 10 years, the chance that it has to be modified by someone else, who
has no floppy disk with the original program - or at least no computer which can read in those
old-fashioned floppies.

www.manaraa.com

82 Software Engineering for Manufacturing Systems

The features of the documentation system playa major role in selecting an appropriate system
from the engineer's point of view. That is because listings are the only documentation the end
user gets.

Therefore sophisticated documentation features are a must and include:

• Complete program listings in graphics for programs, function blocks and functions
• Sub-projects and the project tree, cross reference list
• Declarations, instructions, assignment list
• Compiler results, program comparison results
• Controller configurations, on-line statuses etc.

Principle 11 :
Provide for re-documentation of the application solely from the PLC.

When it comes to documentation of the application the printed documents are intended to be
used by personnel who don't know much about the algorithms the implementers used and in
most cases are unfamiliar with the programming environment. So if the documentation
contains terms or expressions which are unknown to them the documentation may be of no use
at all.

Principle 12:
Use terms and verbs which are convenient for the user. Best is to use the
vocabulary he or she already knows.

Because real programmers don't read manuals this applies also to the help files, menus,
dialogues and other stuff!

7 CONCLUSIONS

This paper shows principles which should be obeyed by every designer of CASE-Tools for
control automation. In applying these principles to modem programming environments
infoteam Software created a software package which is widely accepted because of its
reliability and its user-friendly interfaces and methodologies.

8 REFERENCES

Brendel, W. (1994) Objektorientierte Werkzeuge zur SPS-Programmierung. Automation
Precision 10/94, 10-12

Brendel, W.; John, K.-H.; Grotsch, E. (1994) BASE LEVEL Certification of IEC 1131-3
compliant products. PLCopening April 1994, 6-7

www.manaraa.com

Principles of CASE tool design for automation control 83

9 BIOGRAPHY

Dr. Wolfgang Brendel studied computer science at the ,,Friedrich Alexander Universitiit
Erlangen - Niirnberg" in the early seventies. Special emphasis was on graph-grammars and
incremental compilers. He then joined Siemens and was responsible for the development of the
STEP 5 programming software tools until 1981. After rejoining the university he worked on
hardware description languages and silicon compilers finishing with the degree of Ph.D.

In 1983 Dr. Brendel, with three colleagues, founded "infoteam Software", a company in the
software services industry located near Nuremberg, Germany. Nowadays infoteam is one of
the leading manufacturers of PLe programming systems with regard to the new standard
lEe 1131-3 and is working in a close cooperation with almost all renowned PLe manu­
facturers. Developing quality software is a main focus.

Infoteam is a company owned by the employees, which ensures a high degree of commitment
between employee and employer.

www.manaraa.com

8

VPLC . A Case Tool for the Virtual
Programming, Simulation and Diagnosis of
PLC·Software

o. Prof Dr.-Ing. Dieter Spath
Dipl.-Ing. Peter Guinand (guinand@Wbkstl9.mach.uni-karlsruhe.de)
Dipl.-Ing. Marco Lanza (marco.lanza@mach.uni-karlsruhe.de)
Dipl.-Ing. Ulf Osmers (osmers@Wbkst4.mach.uni-karlsruhe.de)

Institute for Machine Tools and Production Science
KaiserstrafJe 12
76128 Karlsruhe, Germany
Tel: ++49/ 721 /608-4011
Fax: ++49/721 /699153

Abstract

Software development for programmable logical controllers is usually based on low-level
languages such as the instruction list or the ladder diagram. At the same time, the programmer
looks at a machine or an assembly system in a bit-oriented way; he translates the operational
sequences into logical and/or time based combinations of binary signals described by means of
Boolean algebra. This classical method causes a lot of problems in reality so it should be
improved. It is the aim of the report to show a way developing PLC-software graphically and
interactively within a Virtual Reality (VR) based system (VPLC).

Keywords

Computer Aided Manufacturing (CAM), Virtual Reality (VR), Programmable Logical Con­
trollers (PLC)

www.manaraa.com

VPLC - a CASE tool for PLC-software 85

1. INTRODUCTION

1.1 Outlining the problem

The process chain for the planning of PLC-controlled facilities gains more and more impor­
tance in companies of the mechanical engineering industry. However, in a company with an
organizational division of tasks according to function, processes which actually intertwine are
subdivided into partial processes that are often worked upon by "widely spread" specialized
departments (Ritter-90). Therefore, information and communication problems typical for
process chains (as shown in figure I) occur here, too

IlOIlIrWiSjMlI1I
8CIftwwa

service

figure 1: Problems of the process chain for the planning and maintenance of PLC-Software in com-
panies of the mechanical engineering industry

A detailed analysis showed that the lack of a uniform and consistent consideration of the fa­
cility to be controlled emerges as one of the major reasons for software errors. To-date, any
properties and features of the facility of functional relevance have to be determined from dif­
ferent sources (CAD drawings, part lists, component catalogues, verbal/formal functional
descriptions), the processed and integrated into the software by the control technician. Simul­
taneously, the efficiency of the development and test tools is highly limited due to the classical
connection-oriented programming methods (Schelberg-94). Thus, at the interface between
design and control engineering, a fracture in model making occurs which encompasses today
the splitting up and at least temporary loss of information that was originally connected
(figure 2).

www.manaraa.com

86 Software Engineering for Manufacturing Systems

(mechanical) design control engineering

~
u aZVL_H

to next belt ... III U SZVL_H
Q)

S SZVL_AUS
slowdown ... III III R SZVL_EIN

~
c - interface detailing - comJ~ent detailing I - abstract description of function 0 - signal-oriented description of function
:;::

- implicit description of behaviour as - signal-oriented desCription of behaviour
- geometricaVfunctional dependencies

I
E - signal combinations ...
0 -! component-oriented I c I signal-oriented I .-

II? uniform modelling method which consistently reflects all aspects

approach for building an "intelligent" facility model

consistent transfer of the method into software designs

C. solution of tasks previously difficult to handle

figure 2: Fracture in model making between design and control engineering

One of the decisive stages of realizing automated facilities is the stage of initial operation since
only here the orderly interaction of the mechanical, electric, hydraulic/pneumatic functions and
those of control engineering of a facility can be checked. Many errors, the reasons of which
can be found in prior stages, are recognized only during the stage of initial operation. Apart
from high costs they may also result in safety risks for man and machine.

Therefore an important work basis for the staff in commencement of operations - who are
usually not involved in the planning phase but are often supported by staff members from
design and control engineering - is a sufficient description of the facility (Lanza-95) Apart
from the data provided in the technical description, a three-dimensional visualization of the
facility to be assembled can prove to be a great support for the assembly staff.

Different research studies have shown that particularly control engineering and there again the
software development can be held responsible for a major part of errors occurring during this
stage (figure 3).

www.manaraa.com

VPLC - a CASE tool for PLC-software 87

10CaI Qntion initiIJ .:::../ typicllllITOI1I

d poofect openIIon d~ Of mIa.Ing ~

/' InarTec:I pttICIdlnl

I
wn>ng SIR at Upa. d~ IIdpe

up'"

fffi obouIlIO p.c. 01 .. wn>ng SIR at II1IIII\nIIIgnU

~" "'- upm

'-70p.c.
mullpl. usa~ at venables

f*' _ I IITCI'In I\.IINng tim. (exceeding !he cycle time)
~ conII'IlI ---~ rniaceIIaneous 8ITCI'I (typing emn. CMII'Iighl)

_1~p.c.
...

figure 3: Research results of analyses of the initiation of operations

1.2 Solution approach

A solution of the above named problems in the planning of automated facilities, namely

• sources of documents are distributed and sections overlap

• infonnation losses between mechanical engineering and control engineering

• staff in initiation of operations have no spatial and functional comprehension of the facility

• software errors which cause great losses in time during initiation of operations

• no real graphic support, therefore no program evaluation in the development platfonn re-
spectively in the projection stage

• complicated maintenance

is offered in the fonn of a unifonn, integrated, computer-aided three-dimensional modeling of
the complete facility including the implicit controlling task. However, the increasing com­
plexity of the tasks in design, planning and production means that even the currently used
methods of communication between man and computer have met with their boundaries.

Efforts to cope with this condition have led to the now extensive introduction of graphic user
interfaces. These may mostly be used with the help of pointing appliances and they require far
fewer abstraction skills and less knowledge from the user's part than the previous line or
command-oriented surfaces did since they mostly use easy-to-remember graphic symbols in­
stead of abstract commands. However, there are limits for the usage of these user interfaces as
they are limited to two dimensions. It is particularly difficult to realize the handling of three­
dimensional objects and working on problems which require a spatial representation.

New courses might be pursued by utilizing three-dimensional user interfaces the way they are
realized in Virtual Reality systems. By using special input and output devices and computer
platfonns, these systems are capable of integrating the user or several users working in an
interdisciplinary way (e.g. designer, layout planner, control technician) as the acting part into

www.manaraa.com

88 Software Engineering for Manufacturing Systems

three-dimensional, synthetic environments which places the communication of manlmachine
and man/man onto a completely new basis (Osmers-95).

With VR systems, much more use can be made of the natural problem solving attitude of man
than was possible with previous user interfaces since it is always possible to refer to real
conditions due to the real-life arrangement of synthetic environments and the possibility of 3D­
interaction in real time. The user is therefore able to act intuitively or based on his experience
and can thus also treat more complex spatial problems without being impeded by limitations.

This view complies particularly with the designer who assigns technical basic components or
assembly groups to the partial procedures of the functional structure and then composes the
facility layout. Each assembly group possesses not only its geometry but also determined
physical properties, a logical or dynamic behavior and last not least relationships to other
components (Guinand-95).

The relationships and dependencies between the components may then be explicitly expressed
by stating the relationship type; cardinalities (assessment of the relationships) are expressed by
complementary data.

With the help of a function model, the basic procedures and connections within the VR system
are described by the designer on a comparatively abstract level. Thus, on the one hand it
represents the basis of an "intelligent" facility model together with the process model which
may be regarded as a detailed and extended version of the function model, and on the other
hand it is the basis of the subsequent PLC-program.

figure 3: Exemplary VR -model of the facility

At the moment, modeling is done with a commercially available VR-development environment
and for the later stage a CAD-attachment is planned for the geometry and an attachment to an
object-oriented data base for technological data.

www.manaraa.com

VPLC - a CASE tool for PLC-software 89

2. REPRESENTATION OF THE OBJECT PROPERTIES

The systematic classification of the components of a facility shows that certain characteristics
are common to several or to all of the assembly groups considered. All facility objects, for
example, have a setup structure and a defined geometry while stating a logical behavior is
generally only possible for functional units or assembly groups with their own information
processing or control objects. Figure 5 gives an overview of the attributes and properties
required for the definition in control engineering of a technical object. The modeling method
allows any desired expansions at a later time (Spath-95).

2.1 Semantic data

This serves to manage the components. An essential item is the name of the component which
will later facilitate unambiguous identification of the component type in any application. In this
context it may prove to be an advantage across different company departments as regards the
unambiguity of name to utilize the manufacturer's type name - e.g. that of a supplier of
pneumatic components.

2.2 Geometrical data

With increasing computer performance it will be possible to import complex components from
existing data structures or from widely used CAD systems without the abstraction required so
far.

2.3 dynamic properties and attributing

Apart from the static (geometry) properties the dynamic ones of the facility elements have to
be incorporated into the model.

An object may be structured using several dynamic elements. Their behavior and interaction
are described and controlled by means of a program.

Path-time or velocity-time diagrams used to be the standard to describe the conditions of
movement and the movement profile. Attributing within the VR systems allows the description
of direct physical properties such as initial velocities, friction, pulses, kinematics chains, or
modified movement profiles as can be observed with pneumatic components. Therefore,
collision studies can easily be carried out.

2.4 link interface

Every object is equipped with specific dialogues which are activated at running time together
with the object. They serve on the one hand to facilitate communication between. facility
components and controlling, on the other hand also the exchange of messages of (intelligent)
peripheral assembly groups among each other.

www.manaraa.com

90 Software Engineering for Manufacturing Systems

2.5 Multi media interrace

To improve the handling of complex object and data structures, VR systems are equipped with
additional functions attractive to the sensory tract of man, such as texture mapping and sound.

extensions

ao diagnosis
.. hydrauics

multimedia­
interface

aosound
ao links

.. textures

semantic data

ao name
.. helptelCl
.. object-

description

link­
interface

figure 5: Definition of a data record to describe an object

geometric data (3D)

stat./dyn. structure

101 _!el dt

~ 11 ~ J-J
12

3. FROM THE OBJECTS TO THE PLC PROGRAM READY TO
RUN

The following partial steps and task areas may be differentiated when planning VR-aided PLC
programs.

First, the facility is supposed to be compiled with the help of working materials or machine
catalogues. In the next step the logical connections between actor and sensors are produced by
graphic, interactive programming technologies. Prior to the final realization, the configuration
of the components (geometrical aspects) as well as the functionality of the procedure control
(logic and time-related dependencies) can be validated and optimized in simulation runs. The
final program is transferred directly to the real facility via suitable interfaces.

www.manaraa.com

VPLC - a CASE tool for PLC-software 91

3.1 Configuration of the facility components

Using the working materials library and choosing from suitable menues (figure 6), the designer
can load his facility modules, such as functional units (conveyer belts, pushers, linear axles),
sensors (light barriers, limit switches) or even complete machines into his digital environment
by clicking the mouse to "drag and drop". Apart from the geometry, the components are also
furnished with certain basic functionalities corresponding to the modeling of
chapter 2.

PO~lllon and Size

figure 6: Configuration of the facility layout

With the help of a corresponding input device, such as a spacemouse (6 degrees of freedom),
the user may freely navigate within the facility and can thus validate the layout. With the cor­
responding tools the facility layout can be adapted to different requirements at any time.

3.2 Logical-functional connection

Inlets and outlets (actors and sensors) are connected to become action modules by choosing
easy-to-remember graphic representations of actions which reflect a ,,1 to 1" image of the
mechanical elements in the real world.

Choosing the actions activates a dialogue which facilitates a "bonding" of the modules in the
VR system in a graphic, interactive way with a low level of abstraction. Any complicated

www.manaraa.com

92 Software Engineering for Manufacturing Systems

construction of relationships and restrictions in instructions list, ladder diagram or contact plan
is redundant.

On confIrmation the dialogue is valid and represents a functional module; the graphic repre­
sentations are colored to mark "connection".

HI'.

UE'rknopf'!n

I Edid l

~I
•

figure 7: Dialogue-supported programming offunctional modules

The logic of the functional module and thus even at an early stage parts of the PLC-program
may be tested by simulating the partial procedure.

In the next step, the functional modules are connected to become procedure modules, again
with dialogue assistance. If arranged in sequence, these modules show the procedure of the
facility. This hierarchically structured "bottom-up" approach is depicted in fIgure 8.

www.manaraa.com

VPLC - a CASE tool for PLC-software

II] transport

[!] drill

@]
[iJ

± -,------->------- ~

light barrier cylinder clamping jaw

figure 8. Aggregating the complete facility from the modules

93

action of the facility

procedure modules

function units

actorslsensolS

Upon completion of the programming, the facility is simulated taking into account aspects of
time and geometry (collision). Errors, inconsistencies and weak spots are quickly recognized
and eliminated due to the provided options of graphic representations, interaction and naviga­
tion within the digital model. Partial steps may be tested at any time, e.g. by resetting the tool
manually in VR.

In the background, suitable transfer records according to DIN IEC 1131 (IEC-93) are issued.
They can be translated into the different PLC dialects depending on the employed controlling.
Apart from the control engineering, the layout plan, component and parts list may also be
generated from the digital model.

In contrast to high-end graphic VR systems, the development on a PC-based system is ad­
visable here since the focus of the application is not so much the graphic representation but the
interaction and the advanced man-machine-interface. Moreover we expect greater acceptance
in industry for the PC-based system.

4. OUTLOOK

The project VPLC is currently being realized at the Institute for Machine Tools an Production
Science at the Technical University of Karlsruhe, Germany. With the integrating platform and
interface VR, not only the pure planning of the facility and the PLC-prograrn generating but
also planning of hydraulic systems, monitoring, diagnosis and failure detection based on an
intelligent model could be implemented.

www.manaraa.com

94 Software Engineering for Manufacturing Systems

5. REFERENCES

(Guinand-95) Guinand, P., Planning of production sites with the help of Virtual Reality
Exemplary Realization, diploma thesis, Universitiit (TH) Karlsruhe, 1995

(Schelberg-94) Schelberg, H.-J., Objectoriented Planning of PLC-Software, Dissertation
Universitiit (TH) Karlsruhe, faculty of mechanical engineering, 1994

(IEC-93) IECl131 Part 3: Standard for programmable controllers - Programming
Languages, Beuth Verlag 1993

(Lanza-95) Lanza, M., Schellberg, H.-J., Object Oriented Planning of control tech­
niques, proceedings of ,,4. Fachtagung zum Entwurf komplexer Automati­
sierungssysteme", Braunschweig, June 7-9.1995, p.463-468

(Osmers-95) Osmers, U., Visualising, animating, simulating - Virtual Reality makes your
plannings alive., IHK-Informationen fUr die Wirtschaft, 9/95, p.17 -19

(Ritter-90) Ritter, K.H.: process chains in product development, VDI-Breichte Nr.830,
1990.

(Spath-95) Spath, D., Osmers, U., Weber, J., Planning Production Systems with VR,
DFG-Schwerpunktsprogramm, Ergebnisbericht der 1. Antragsphase, July
1995

6. BIOGRAPHY

o.Prof. Dr.-Ing. Dieter Spath, born in 1952. Study of mechnical engineering at the Technical
University of Munich. In 1981, a doctor's degree at the Institute for Machine Tools and Mana­
gement Science at the TV Munich. Entering the company group KASTO in 1981, he has been
managing director of the same since 1988. In 1992 appointment to the post of professor in
ordinary at the University (TH) of Karlsruhe, Institute for Machine Tools and Production
Science.

Dipl.-Ing Peter Guinand, born in 1966. Study of mechanical engineering at University (TH) of
Karlsruhe. In 1995 diploma degree and since 1995 working as a free reasearcher for the
Institute for Machine Tools and Production Science (wbk) and at the Institute for Industrial
Building Production (ifib). His main field of interest is the development of VR applications
within the scope of CAD/CAM.

Dipl.-Ing Marco Lanza, born in 1966. Study of Production Science at the University (TH) of
karlsruhe. In 1994 diploma degree and then research assistant at the Institute for machine tools
and production science in Karlsruhe. His main fields of interest are lower cost automization
and applications of Engineering Data Management Systems (EDMS).

Dipl.-Ing Ulf Osmers, born in 1967. Study of Production Science at the University (TH) of
karlsruhe. In 1993 diploma degree and since 1994 research assistant at the Institute for Ma­
chine Tools and Production Science in Karlsruhe. His main fields of interest are the applica­
tions of Virtual Reality in Product Development and Production Planning as well as distributed
manufacturing and scheduling.

www.manaraa.com

9

ASPECT· a CASE· Tool for Control
Functions Originating from Mechanical
Layout

T. Brandl, R. Lutz, J. Reichenbiicher
Institutftir Steuerungstechnik der Werkzeugmaschinen und
Fertigungseinrichtungen, Universitiit Stuttgart
Seidenstr. 36
70174 Stuttgart
Germany
Tel.: ++49-711-121-2420
FAX: ++49-711-l21-2413
thomas.brandl@isw.uni-stuttgart.de
rainer.lutz@isw.uni-stuttgart.de

Abstract

The systematic design of control software requires exchange of information between the
software development department and other departments of an enterprise (e.g. project
planning and mechanical design). For this purpose neither construction plans nor program
listings are suitable description forms. In this paper three design levels and the related
description forms are introduced. Thus a common information base shall be provided to all
experts who are involved in an automation project. Step by step this information base may be
detailed until it is possible to generate the code for a controller by a compiler automatically.
Special respect is given on the reuse of design objects. For the efficient application of the
proposed method the CASE-Tool prototype ASPECT has been developed at the Institute for
Control Technology at the University of Stuttgart.

Keywords

Control software, software design methods, reuse, CASE-Tool

www.manaraa.com

96 Software Engineering for Manufacturing Systems

1 INTRODUCTION

The present development of control software is characterized by increasingly complex
requirements in regard to functionality, cost and quality. Control software, once only an
"accessory" of electrical machine design, has now become an indispensable part of the final
product, the "machine".

In the past the essential task was the programming of binary logic as a substitute for an
relais control. Now, various additional tasks are to be solved, as for example diagnosis and
monitoring functions, communication, man machine interfaces and data processing like tool
management or machine data acquisition. These requirements cannot be met with traditional
approaches and new techniques are required. This paper will show how control software
development can be improved and which methods and tools are needed for this improvement.

2 PROBLEMS AND GOALS

The current process for developing control software is characterized by a strictly sequential
succession of machine design tasks (Pritschow, u.a., 1994). Little exchange of information
happens between the departments involved (Fig. 1). A lot of information (which is important
later for the programming) is generated at an early phase of the project e.g. as a requirement
specification or a submission to the customer made by the project planning department.

tasks

tools

results

project
planning

text editors
graphiCal editors

LIJ
manually drawn

documents

requirement
specifiCations

schematic
oillgrams

Involved departments

mecIlanical CAD

electrical
CAD

e
manually drawn

documents

structure of
a machine circuit
construction oragram
drawing

positioo-time- electriCal

diagrams device liSt

Figure 1 Typical sequence of project processing. (104 33ge)

progranvning
unit

PLC - program

www.manaraa.com

ASPECT - a CASE tool jar control junctions 97

Usually, computer-aided tools are applied, as e.g. mechanical or electrical CAD. Since it is
impossible to exchange logical data between the different tools through suitable interfaces,
each tool represents an isolated solution in regard to a specific area. Consequently, a great
amount of data has to be entered repeatedly which results in increased work and a higher error
rate.

In addition, these data isolated solutions impede an efficient cross-departmental application
of re-usable design solutions and machine modifications. Therefore, reuse is only possible in
specific departments; there it is executed at a growing rate. But this means that a minimal
modification made in the mechanical design department may result in considerable
modifications and adaptations of the control program.

In regard to cross-departmental information exchange, the question always arises: Which
presentations and describing forms are most apt? It is very important to create a common
communication basis (Storr u.a., 1994) for the staff involved. Not every document currently
used is suitable for this purpose: a construction engineer will not know how to use an
instruction list program, just like an PLC programmer will not derive benefits from the details
of a technical drawing.

The customer driven necessity to change from one controller vendor to the product of
another one usually requires a re-programming. The reuse of already developed and tested
program modules is not possible in this case. Even the standardization of programming
languages according to IEC 1131-3 (N.N., IEC 1131-3) did not improve this, because this
standard does not include portability specifications.

Along with the actual development, the preparation of the technical documentation
determines the elapsed time of a project. Information from the individual departments are
usually collected and made into a document after the technical development is finished. The
primary purpose of this is to make comprehensive information available to the service and
maintenance staff. An accurate preparation of the documents is also important in regard to
product liability or CE certification.

The above mentioned problems could be solved by the following measures:
Improving software quality by
• continuously proceeding from the start of the project to the commissioning,
• application of widely understood methods for the design of control software,
• increased re-use of already generated software design and modules and
• developing device-independent designs and programs.

Shortening of the elapsed project time by
• parallel project development by means of early information transfer between departments,
• preparing the documentation along with the development,
• automated generation of program code and
• application of one or more suitable computer-aided tools.

3 REDUCED TIME FOR CONTROL SOFTWARE DEVELOPMENT

Reduced development time for control software must allow in particular for the transfer of
information at an early stage (Weck, Kohring, 1991). Here it is useful to provide different

www.manaraa.com

98 Software Engineering f or Manufacturing Systems

categories and to assign these categories specific functions. An extensive analysis leads to
three design levels (Storr, u.a., 1994; Herrscher, Grimm, Storr, Reichenbacher, 1991)
• general description (design level 1)
• functional description (design level 2) and
• detailed description (design level 3).

Fig. 2 shows which departments in the different levels generate the descriptions and which
departments use them.

D generation use

Figure 2 Design levels and description forms (104 34Oe)

General descriptions are mainly used for the early structuring of a machine or system, e.g.
during the project planning phase or in the beginning of the mechanical design. Functions and
mutual dependencies are illustrated in an abstract form.

The purpose of functional descriptions is to break down the functions that first, in the
general descriptions, have been displayed abstractly, in order to fulfill the technical
requirements.

Detailed descriptions give more information about all additional attributes of the elements
used in the other design levels, besides just structure and function. Such information may be
measurements, identifiers, cross references, connected loads etc.

By introducing defined structuring levels, we facilitate the modularization of the entire
machine function and functional descriptions and design methods for control software. Thus
the functions to be implemented can be described long before technical solutions are detailed.
So it is possible
• to provide functional information at an early time and
• cross-departmentally aim at applying standardized solutions.

www.manaraa.com

ASPECT - a CASE toolfor control functions 99

Early data transfer is, at the same time, a necessary premise for parallel representation of
the project work (simultaneous engineering). Appropriate methods for describing the
functionally oriented structure and for the software design are presented in the following
chapter.

4 GENERAL DESCRIPTIONS AND FUNCTIONAL DESCRIPTIONS

Suitable methods for supporting a parallel and cross-departmental information exchange in
machine tool builder enterprises require a view of the problem that differs from the generally
accepted views of today which are specific to particular departments. This means, for example,
that functionality of a control system is not necessarily understood as a PLC-program for a
specific controller. First there has to be a rather exact design for the control system, in which
the functionality required (and later to be implemented) can be recognized by other
participants of the project.

The layout of an installation is determined by mechanical design engineers. Therefore, it is
convenient if the design objects which the control software engineer uses are closely related to
the design objects of the mechanical engineer. Only if both experts agree for which parts of an
installation already existing design objects are to be applied; can efficient reuse be possible.

At the design level of general descriptions, an expanded technology scheme can be used
for this purpose, which differentiates design objects and contains a coarse geometric
representation (Fig. 3). Design objects incorporate function units, function groups, actuators,
sensors, operator control elements etc. as well as the interdependencies between them.
Function units and function groups (in the following called function objects) can be detailed or
combined so that any complex structure can be built. The design engineer can specify the
behaviour of each function object by means of functional descriptions. The definition of clearly
separated design objects results in
• unified structuring of a machine or a system,
• simple generation of modules and consequently easier reuse,
• clear function specification
• possibility to describe mutual dependencies and relations and
• high comprehensibility.

As a next step, by using the descriptions of design level 2, it is necessary to add formal
definitions to the design objects. This applies, as a rule, to function units and groups. Design
objects like actuators and sensors are not further detailed. The relationships between the
function units should also be described, since they represent the data exchange through
interfaces of the function units.

www.manaraa.com

100 Software Engineering for Manufacturing Systems

-{ design level 1 1
J

I:'
3

I

pocket drill 02A /-4 travel guard minus

drive e:
// -4 feed switch

.,............- -4 transport enabling

~--4 initia I po sition

/
' ----~4 travel guard plus

/ I \ "
// "-

/
d~

"-, -,

T~/ ~ 'T ~ i
Sp_drive C_valve A_valve

Figure 3 Example of an expanded technology scheme (104 341e)

Suitable descriptions (Pritschow, u.a., 1988) for logical dependencies - especially because
of the graphical representation - include sequential function charts, Petri nets and state graphs.
Signal curves according to VDI 3260 (VDI-Richtlinie 3260, 1977) describe more time­
oriented interrelations.

State graphs (Fig. 4) (Fleckenstein, 1987; Otto, 1992) are examined closer in this book in
the paper "State Diagrams - A New Programming Method for Programmable Logic
Controllers". They can be used for describing function units and function groups formally and
up to the code generation stage. State graphs are intentionally device-independent and easy to
understand in order to enable different departments of an enterprise to use them. Nevertheless,
they can be used to directly generate control programs - a feature that is required for
continuity. For this purpose the description of all design objects contained in the general
description must be completed. In detail this means
• complete state graphs for all function units and groups and
• sufficiently detailed specifications of the components (addresses, data types, etc.)

Thus the code generation for any type of controller is possible and also easy to automate
after the details have been specified in design level 3. The I/O-addresses of controller signals
are such a detail, for example. Fig. 5 shows our concept and examples of the code generation
process. We have found that certain features of a language like subprograms, case
differentiation constructors and symbolic identifiers are important for a direct mapping of the
design objects onto the target language. In the case of control-oriented languages like the
"Modicon State Language" or structured text according IEC 1131-3 this is exceedingly simple
to do. Assembler-like languages which include in essence all current controller dialects as well
as three languages of the IEC 1131-3, require much more effort. Fig. 4 illustrates a simple
realization with function blocks where efficiency of the code depends on how much the target

www.manaraa.com

ASPECT - a CASE tool for control functions 101

control supports the processing of function blocks_ The application of special compilers might
therefore be worthwhile_

I

furdion group
'crilfing unit'

fr~

sequence
state graph

request-l
ackrlo'Medge­

Ol8ganl

drill start
pockethole feed

pocke~ole f~

finished finished

function unit
'f~slide'

elementary
state graph

Figure 4 Sequence and elementary state graph synchronized by requests (A) and
acknowledgements (Q) (104 343e)

block dia ram code-

- lEe 1131-3
- 5T
-AWL
(- FBS)
(-KOP)

Figure 5 Concept of code generation (104 344e)

code-examples
void ~OO3(gIObaIe_da1en -daten)
(

swldl(dalen->zus,-3) (
caseD:{

ff(cxLD_l(daten))

};

{ dalen->zuS\..3-1;
RES_S_STEP;
funcU (dalen); bleak; I:

treak;

case 1:{

Ml

www.manaraa.com

102 Software Engineering for Manufacturing Systems

5 CASE· TOOL ASPECT FOR SUPPORT OF CROSS·
DEPARTMENTAL CONTROL PROGRAM DEVELOPMENT

To a large part the methods and descriptions mentioned in chapter 3 and 4 meet the
requirements placed in the beginning of this paper. The introduction of a computer-aided tool
promises additional benefits (Lutz, 1995) because
• the employee is relieved of routine work,
• data is kept consistent and
• the current isolation of today's CAD systems can be partially abolished.

Important requirements for such a tool include
• support for all three design levels (general diagrams, functional descriptions, detailed

descriptions),
• facilitates continuous progress throughout the project,
• uniform and consistent administration of entered data,
• simple and intuitive user interface,
• configurability by the user,
• extensibility,
• broad applicability, and
• possibility for multiple access.

Fig. 6 shows the structure of the prototype developed at the ISW, which fulfills the mentioned
requirements for the most part. In particular the integrated project data base ensures relevance
and consistency of data. The unified structuring allows the integration of further function
modules in ASPECT.

6 CURRENT RESEARCH ON REUSE

Our current research work attempts to increase the efficiency and quality of software by
specific and systematic reuse of designs, based on the state graph method. Reusable design
provides the following benefits:
• Lower maintenance time and cost because only a few modifications have to be maintained

even if a large number of applications are in operation.
• Less faulty and more stable designs, because faults are detected early due to repeated

application of control software modules.
• Improved productivity because the know-how of qualified personnel is incorporated.
• Good and well established design examples make for an additional training effect that is

especially beneficial for new personnel.

The present object-based modeling concept and the support by ASPECT create a basis for a
systematical software development. Design levels and description methods provide the
possibility to copy complex design objects which are congruent to mechanical subsystems from
existing applications and to reuse them as software design modules.

www.manaraa.com

m
project planning

mecmnical
desi;ln

electrical
design

~
software

development

----+
I " .. : ,,' (>

cOI11llissiomng

ASPECT - a CASE tool for control functions

Figure 6 Modules of the CASE-Tool ASPECf (104 346e)

103

documentation

But systematic reuse for practical applications exceeds the "copying from application A and
inserting in application BU. It requires a defined procedure with additional descriptions. So
software development becomes a systematic configuration with parameterizable modules
which are administrated in libraries. This results in the following features (see also Fig. 7):

• For the administration in libraries the function objects have to contain information details
(reuse information) in addition to the software design. Thus a successful search is possible
in an abstract mar.ner, without knowing the design details. Such information includes the
specification on design level I, list of hardware equipment (actuators and sensors) and the
abstract service interface presented to the outside.

• Function objects have to be configured for the application when extracted from the library.
Configurable elements are stored within the components as place holders. Place holders
include identifiers (of design objects, states, components, variables, ..) or comments. For the
assignment of values or texts to place holders, function objects have to be represented by
corresponding templates.

• By connecting the interface symbols (orders and acknowledgments) the function objects are
integrated in an existing application. Since these interface symbols postulate specified
counterparts (corresponding client and server functionality), they can, under certain
circumstances, be searched for and connected by computer. So the configuration is partially
automated.

• Objects of all design levels and of any complexity have to be specified and administered in
the library. This includes simple binary sensors as well as complex hierarchical function
groups (e.g. drilling units) with subordinated function units and their sensors, actuators and

www.manaraa.com

104 Software Engineering for Manufacturing Systems

function descriptions (e.g. sequence and elementary state graphs). Furthermore, we need to
examine how subfunctions (e.g. subgraph 'motor acceleration') can be defined and
administered for repeated application.

• In order to classify modifications to function objects, the object-oriented principle of
'inheritance' has to be applied within a class hierarchy. Through inheritance, variable
declarations (data) and functions can be generally used for similar function objects and
redundancies can be avoided. In contrast to textual object-oriented languages (e.g.
Smalltalk), a graphical language for control applications requires additional mechanisms,
which allow for the inheritance of data (variables within function objects), hardware
(sensors and actuators with controller inputs and outputs) as well as graphical design
descriptions (e.g. state graphs).

administration 01 components
.--___ ---,01 all design levels

l)lQ~1
design objects functional objects sub fuldions

Templates lor selecting
and parametrizing
deSign objects

defined interfaces for
c1ient- and server­
lunctional objects to
conflQ ure the
app~cation

Figure 7 Systematically reuse of software design (104 345e)

The implementation of the above mentioned features is the subject of a current research
project sponsored by the German Ministry for Education and Research, which is conducted in
cooperation with two mechanical engineering firms and two software enterprises.

7 SUMMARY

With the current approaches to the development of machines and systems, the weak points of
software engineering have been demonstrated. Strictly sequential procedures and poor
information exchange between the departments of an enterprise are typical. An improvement
can be achieved by a parallel procedure, the use of widely understandable description methods,
a higher degree of reuse of existing design objects and the use of supporting tools.

www.manaraa.com

ASPECT - a CASE tool for control functions 105

The development process has been divided into three design levels "general description",
"functional description" and "detailed description". The usage of appropriate description forms
allows for an improved project development time. The descriptions contain all information
which is needed to generate the control code automatically by means of suitable compilers.
The development engineers are therefore no longer compelled to take care of control hardware
related details in early phases of a project.

This procedure is efficiently supported by a modular and open CASE tool, which makes the
development of control functions easier through the use of graphical editors and also
integrates all departments involved in the project through a central project data base. For this
purpose the ISW developed the tool ASPECT as a prototype.

Current research work at the institute aims in particular to further improve the support for
modeling and reuse of machine control software, by using object-oriented techniques.

6 REFERENCES

Storr, A., u.a.(1994) Simultan zur SPS-Software - Neue Ansatze zur effizienten SPS­
Programmierung. Elektronik 23,124-136.

N.N., IEC 1131-3: Programmable Control, Part 3: Programming Languages.
Herrscher, A., Grimm, W., Storr, A., Reichenblicher, J. (1991) Systematische Software­

erstellung fur Steuerungen. In: Tagungsband zum FfK '91, Stuttgart 1.-2.10.1991,52-58.
Springer-Verlag, Berlin, Heidelberg, New York, Tokyo.

Pritschow, G., u.a. (1988) Studie uber mogliche Beschreibungsformen bei der Software­
erstellung und Dokumentation. VDW-Forschungsbericht 1010, Frankfurt.

Fleckenstein, J. (1987) Zustandsgraphen fUr SPS - Grafikunterstutzte Prograrnmierung und
steuerungsunabhlingige Darstellung. ISW63. Springer Verlag, Berlin, Heidelberg,
New York, Tokyo.

Otto, H.-P. (1992) Zustandsgraphen - Eine EinfUhrung in die Methode mit Beispielen.
Druckschrift des Arbeitskreises "Lastenheft fUr ein SPS-CASE-Tool", Nurnberg.

VDI-Richtlinie 3260 (1977) Funktionsdiagramme von Arbeitsmaschinen und
Fertigungsanlagen. Beuth-Verlag, Berlin, Koln.

Pritschow, G., u.a. (1994) Interdisciplinary Models and Descriptions for the Program
Development for PLCs. Production Engineering Vol. WI. Hanser Verlag, Munchen,
Wien, New York.

Weck, M., Kohring, A. (1991) Die Bedeutung der Anlagespezifikation fur die Entwicklung
von SPS-Software. In: Pritschow, G., Spur, G., Weck, M. (Hrsg.): Maschinennahe
Steuerungstechnik in der Fertigung. Hanser Verlag, Munchen, Wien, New York.

Lutz, R. (1995) Systematische Softwareerstellung im Maschinenbau mit dem CASE-Tool
ASPECT. In: Software-Entwicklung: Methoden, Werkzeuge, Erfahrungen '95;
6. Kolloquium 12.-14. September 1995, Technische Akademie Esslingen, Ostfildern.

www.manaraa.com

106 Software Engineering for Manufacturing Systems

7 BIOGRAPHY

Dipl.-Ing. T. Brandl has worked at the ISW as electrical engineer since 1991. He carried out
various research and development projects in the area of control technology, mainly for PLC­
controlled special purpose machines. Currently he is developing a tool to present the technical
documentation as an ,,electronic manual". Since 1996 he has been head of the group "Software
Engineering and Diagnosis" at the ISW

Dipl.-Ing. R. Lutz After receiving his degree in mechanical engineering at the University of
Stuttgart in 1993, he began to work at the ISW in the group 'Software Engineering and
Diagnosis'. His main research field is methods and tools for software engineering in control
technology and he has made a major contribution to the design and development of the CASE
tool ASPECT.
Within the joint research project MOWIMA, which is sponsored by the German Federal
Ministry of Education and Research, he is currently working on the reusability of software by
developing and using module libraries for machine and plant construction.

Dipl.-Ing. J. Reichenbiicher started his career at the ISW in 1988 and was head of the group
"Software Engineering and Diagnosis" from 1990 to 1995. One of the projects he managed
during this time was the development of the CASE-Tool prototype ASPECT that is presented
in this paper. In January 1996 he left the institute to build up a group for development of
master control technology at Charmilles, which is a manufacturer of erosion machines.

www.manaraa.com

10

Case Tools for
Flexible Manufacturing Systems

Prof Dr.-Ing. Dr.-Ing. E.h. M. Week, Dipl.-Ing. J. Friedrich,
Dipl.-Ing. Th. Koch, Dipl.-Ing. R. Langen
Laboratory for Machine Tools and Production Engineering (WZL),
Aachen University of Technology, Germany

Abstract
Case Tools for application engineering in the field of flexible manufacturing systems (FMS)
have gained importance due to the rising complexity of the control software. This paper
presents three different case tools from the current research activities at WZL which are part
of COSMOS, an open control architecture for flexible manufacturing systems. CellDesign is a
graphical development tool for cell controllers using a petri net based approach. CASCADE
provides a framework with class libraries and design patterns for an object oriented
development of shop floor applications. MMS-3D KIT is a set of different Case Tools for the
development of device drivers which are needed to integrate machine tools incompatible with
the Manufacturing Message Specification (MMS).

Keywords
Case Tool, Cell Control, Class Library, Design Patterns, Development Environment, MMS,
Open Architecture, OSI, Petri-Nets, Shop Floor Control, Software Engineering, Workframe

1 INTRODUCTION

Enterprises, large and small, are more and more organized into manufacturing cells to
simplify business control, enable lean production and increase the efficiency of production
life cycle. These changes require new control systems based on new technologies such as
open systems, client server architectures and object orientation which offer flexible and
efficient solutions. The major hurdles in entering this new world are related to software: the
time to develop it, the ability to maintain and enhance it, the limits of a program's complexity
with regard to its maintainability and the time it takes to become familiar. This leads to the
major issue information systems have today: long time to market, insufficient quality, high
cost and lack of interoperability. While hardware cost are decreasing, software expenses are
still rising.

www.manaraa.com

108 Software Engineering for Manufacturing Systems

In this paper new and powerful Case Tools used to develop software for the COSMOS
control architecture for flexible manufacturing systems (FMS) are presented (Figure 1).
COSMOS is intended to provide efficient, coherent and cost effective control of
manufacturing process at the factory level (Weck 1995) by providing a generic and open
control architecture. It is based on an integrating infrastructure linking the diverse control
applications into an integrated, but distributed system.

framework for mode ling and generating
i., shop floor control applications

,,' CeliDesign

4;:::::::-!27~~~~~~i~~~--7Ift:~~~, graphical engineering environment
- . for celi controliers

Figure 1 Case Tools of COSMOS.

, case tools for MMS device driver
development

Due to the complexity of flexible manufacturing systems the development of control
software requires a systematic engineering approach to improve software quality and reduce
development time and cost. Therefore, user oriented software engineering tools are an
essential part of the COSMOS architecture, e.g.:
• CASCADE is a development environment consisting of several tools for modeling and

generating shop floor control applications. The tools of CASCADE support an object
oriented approach which is based on two different types of objects: resource objects and
dynamics objects. The application framework provides base classes and design patterns
for these objects.

• CellDesign is a graphical engineering environment for cell controllers. It combines the
power of petri nets with the benefits of reusable software. While basic functions of a cell
controller are provided by so called Function Objects, applications are designed by
glueing these functions together graphically.

• MMS" 3D" KIT are diverse Case Tools needed for the MMS device driver
development. The MMS 3D-Kit enables _ the integration of machine tools using
communication standards other than the International Standard Manufacturing Message
Specification.

COSMOS provides a powerful software architecture that enables FMS control systems to be
defined, developed and installed in the minimum time and with the maximum possible reuse
of existing components.

www.manaraa.com

Case tools for flexible manufacturing systems 109

2 CELLDESIGN - A CASE-TOOL FOR CELL CONTROLLERS

Due to the complexity of Cell Controllers software development requires a systematic
engineering approach to improve software quality and to reduce development time and costs.
Though many CASE tools are available today they are often not suitable for the development
of cell control software. This is because they either do not provide powerful reuse concepts or
they do not support modeling of event-driven systems with lots of parallel execution, but
interdependent processes (Frey, 1992). For that purpose a specific CASE tool called
CellDesign has been developed at WZL.

2.1 Basic Concepts of CellDesign

The client-server concept of COSMOS provides a mechanism for the development of cell
control applications based on reusable software. It is suggested that control applications may
only contain the control flow of a program while the function execution itself is dedicated to
servers. A function call in an application causes a message to be sent to the corresponding
server (Figure 2). This approach has two major advantages. Firstly, application modeling is
independent from function implementation. Secondly, services (functions) provided by
existing servers are reusable. As a consequence powerful and generic server libraries help to
increase the reusability and to decrease the implementation effort.

In cell control applications sequential data processing, algorithms and control of dynamic
processes can be distinguished. For modeling of transaction oriented and algorithmic
applications, methods such as flow-charts are available. Unfortunately these methods are not
suitable for the design of parallel, dynamic and asynchronous processes, which are
characteristic of manufacturing cells. Therefore a modeling approach based on so called
action-nets has been developed. The basic idea is that applications are modeled as objects
which react to external events. For example, an event called "new cell order" is sent by a shop
floor control system to the cell controller, as shown in Figure 3 . Such an event is specified by

[001

milollemenl

Figure 2 Separation of control flow and function examination.

machining
center

www.manaraa.com

110 Software Engineering for Manufacturing Systems

Elln1:
new cell order

Inputt Qutput :
Type arne

Figure 3 Events, activities and action nets.

AdI~ll1!
"1lJtrlltll ttlhrdtt"

Inser! order in
order queue

Check availability
of raw material

Activate
scheduler

CJ Action

OJ Sub·Net

EJ Event

a unique identifier and a list of input-data. An event causes an activity of the application
which can be described in more detail by a sequence of actions. Actions are either atomic
functions executed by servers or further activities in the sense of "sub-nets".

Modeling of control structures in action-nets is based on mechanisms provided by petri­
nets.

Action-Ne t Edllor

CeliDesign

AClion-Net Interpreter

Serve,

o
o

Figure 4 Integrated Development Environment of CellDesign.

I · ••• -

www.manaraa.com

Case tools for flexible manufacturing systems 111

A state of a petri-net can be considered as a precondition for the execution of an action which
is represented by a transition. An action will be executed only if all preconditions are fulfilled
respectively marked. With petri-nets it is very easy to model control structures like sequence,
loop or parallelity and they also simplify synchronization between parallel processes.

Based on these concepts for application engineering a CASE tool called CellDesign has
been developed at WZL, which supports the overall process of application design and
development. As shown in Figure 4, this CASE-Tool consists of three components: action-net
editor, action-net debugger and action-net interpreter. The editor is a powerful, fully graphical
oriented tool for action-net design. It provides all basic elements like states, actions and
connections as well as elements which represent start and end of an action-net.

At the end of the design phase, the code generation process must be activated. This process
compiles all action-nets into a formal language, which can be interpreted by the run-time
system or by the debugger. For debugging the graphical net representation will be used to
ensure that a system developer is able to test an application at the same level of abstraction
and representation as used in the design phase.

The execution process of an action-net is represented by marks flowing through the net. In
"step-by-step" mode the execution of action-nets is under full control of the developer.
Furthermore it is possible to monitor all variables of an action net.

Ph ••• 1

Vendor
(cultomer,1f n.elllll')')

Oulgn , nd Implemlntatlon or
Serve, ProclsS9s

Phue2

V.ndor, CUllomer

Modeling 01 Ac:lioft N~ts

Figure 5 Phases of Application Engineering in CellDesign.

Ph ••• 3

Figure 5 summarizes the engineering approach for the development of end-user specific cell
controllers based on reusable software. In phase I software vendors define basic and reusable
functions combined in servers which represent the "core functionality" of a cell controller.

In phase IT the action-net editor will be used for end-user specific application design on top
of the existing "core functionality". Functions which are not available have to be implemented
separately. At the end of phase IT the code for application execution will be generated
automatically, so that there is no more implementation effort for the developer in phase Ill.

www.manaraa.com

112 Software Engineering for Manufacturing Systems

3 CASCADE - A CASE-TOOL FOR SHOP FLOOR CONTROL
APPLICATIONS

Looking at recent developments in shop floor control systems there is an increasing demand
for systems offering a higher degree of adaptability. The first generation of shop floor control
systems had a monolithic structure (Kohen, 1986) which was superseded by a second
generation of systems having a modular architecture (Lange, 1993, Pritschow, 1991). The
adaptability of these systems is based on the exchange of entire modules. However the
possibilities concerning adaptation do still not readily facilitate individual solutions. Object­
oriented technologies offer promising possibilities.

According to Zipper (1994) ease of use, flexibility and the capability of being' integrated are
the most important requirements for shop floor control applications. These features are
necessary to guarantee long-term use. Therefore the following requirements on the design of a
class library for shop floor control applications should be fulfilled:
• separate modeling of the dynamics processes and the classes itself

• low degree of links between classes
• simple applicability
• extendibility I maintainability
• flexibility I universality

• stability
The application framework developed for CASCADE predefines the architecture of the

software system by fixing the structure and interaction of the single components (Booch,
1994, Pree, 1994). This framework approach does not only support reuse of software at the
source-code level and the domain specific class hierarchy. In addition it supports the reuse of
the entire system-architecture. Therefore a rudimentary, application independent executable
skeleton is available. It can be adapted to individual demands by modifying the application
specific "hot spots" (Pree, 1994). For this purpose the user is supported by a graphical tool set
as described above. This allows a high degree of reuse, because not only the class library
(based on design patterns) (Pree, 1994, Gamma, 1994) can be reused, but also the "glue"
between the components, (e.g. exception handling). .

3.1 Modeling approach

The modeling approach supported by CASCADE, a toolset for modeling and generating shop
floor control applications, is based on two types of objects, resource objects and dynamic
objects. Real objects physically existing in the production system are modeled as resource
objects - sequences and strategies of material flow etc. as dynamic objects. Resource objects
describe objects such as machine tools, transportation units, buffers, tools to be supported by
the software system. They are modeled applying the notation as presented by Rumbaugh
(1991), and consist of attributes, methods and a state model. Instead of identifying an object's
state by one variable (LatheState = {WORKING, DEFECT, ... }) the state can be described by
any combination of the object's attributes. Dynamic objects incorporate the interaction of
resource objects. Processes within the manufacturing system are described in this type of
object. Dynamic objects are modeled using scenarios describing these processes. The reason
for introducing two types of objects is that manufacturing systems differ mainly in the

www.manaraa.com

Case tools for flexible manufacturing systems 113

processes to be carried out within the system. Therefore primary modifications for adaptation
can be carried out in the dynamic objects.

3.2 Development environment

CASCADE is a development environment consisting of several tools for supporting a user
during the phases of modeling and application generation by applying the above approach. A
repository is the central integrating unit for the tools, serving as the storage for data generated
during the design and development phases. It is implemented using an object-oriented
database on an OS/2 platform. Basic tools are the Resource Object Builder and the Dynamics
Object Builder (Figure 6).

They are needed to build the model of the system according to the approach described
above. The design and development cycle is stored in the repository. Afterwards a syntactic
check can be carried out using the Model- Verifier. If the verification has worked successfully
the software based on the model can be generated automatically using the Application
Generator. A Documentation Generator enables the automatic extraction of information out
of the repository and the generation of a paper-based documentation using a standard text
processor.

The core of CASCADE is a class library which provides base classes and patterns to build
resource and dynamic objects. The basic concepts of this library will be described next.

Figure 6 Architecture of the Development Environment.

3.3 Basic concepts of the application framework

The class library designed for the development of shop floor control applications is
implemented in C++ on an OS/2 platform and includes base classes with extensive features.
Unlike other approaches for class libraries for shop floor control applications (Schmid, 1994)
it includes fundamental concepts for software development. Therefore it not only provides
classes for items like machine tools, buffers etc. The underlying concepts are important
because they are the basis for the design and development of the entire class library.

www.manaraa.com

114 Software Engineering for Manufacturing Systems

Basic concepts include runtime type information (RTII) (Chen, 1995; Stroustrup, 1992) as
well as exception and contract handling. Other concepts which have been implemented are
association, iterators, base classes for the application itself, the main program, dynamics
objects, i/o-interfaces (e.g. terminals) etc. Furthermore, we distinguish between active and
passive objects. Active objects have their own thread on a certain site e.g. an object
representing a unit in the production system. Passive objects are used by active objects and
represent items like tools and fixtures. Classes needed to give objects activity (including
communication and distribution) have also been realized. The following paragraphs give a
brief summary of some of the basic implemented concepts.

RTII allows a dynamic (at runtime) type-checking in C++. Regular C++ only features static
type-checking. RTII is needed to avoid runtime errors using "containers", which are often
used in shop floor control applications. Design by contract is used in several OOD-methods
(e.g. Wirfs-Brock (1993». This concept is also not supported by regular C++ (unlike Eiffel -
see Meyer (1994». To improve system stability and robustness this feature has been
implemented in terms of precondition, postcondition and invariant. A precondition tests
whether the client keeps the contract at the beginning of a method. A postcondition has to be
valid after carrying out a method to enable a server to keep its contract. An invariant is a
condition which should always be true. In combination with the implementation for the
design by contract, an extended waming and error handling mechanism has been implemented
using several error levels. An error carries out a throw() statement while a warning does not.
Both statements put information in the logfile. However a program can continue its regular
process after a warning occurred. An exception needs an error handler. For dynamic objects
suitable "handlers" are available. For resource objects they have to be implemented by a
developer depending on the application.

-- -- -- -- -- -- -- -- -- -- -- -- [- F~m:~r;'-!
I

TTOOIContaln---;;-J

~ L set (only ~OIS)
/' i - . - - - - - - - - - - - - - or - - - - - - - - - - - - - - -

I!. __ TSpeclalTooIContalne_r J I~ /' [. TSpecialTool --I [-~
--"------,.-- ~ Application-Classes J

L Lset(on~_ -~~~~~~=::J

Figure 7 Extract of the provided class library.

An association is one of three types of relations between classes and is used extensively in
~O-methods. In shop floor control applications they are needed for example, to design the

www.manaraa.com

Case tools for flexible manufacturing systems 115

relationship between order and customer. An associatIOn could be implemented using
pointers. However pointers are often used without modeling "real world" relationships.
According to Rumbaugh (1991) associations should be implemented as bi-directional. For
this reason a base class TIsAssociatable has been developed which allows one to build
relationships between objects in the same sense as in the design.

To step through any type of container or list, a generic iterator concept has been
implemented. Applying iterators allows uniform access to data, in addition to encapsulating
the needed mechanisms and hiding them from the user.

Figure 7 shows a brief extract from the class library. The framework provides generic
application classes like TIoolContainer or TIool. TContainer and TItem are derived from
TIsLocateable, which describes objects having an identifiable position within the system.
TContainer itself can contain any type of locatable object. The class TIoolContainer is
derived from TContainer. However a restriction has been made on the types of objects this
container can carry. Only objects belonging to the class TIool can be taken by instances of
TIoolContainer.

The mechanism needed to build this "special" container is shown in Figure 8. The method
Admit() of the base class TContainer uses a precondition to test the object to be put into the
container. The precondition uses the method AdmissionTest() to verify whether the object is
of type TIool. This is carried out by applying RTII (method IsA()).

r" •••••• • •••••• •• •••••••

, Precondilion (AdmlsslonTasl(pObjecl).
'. TConlalnerExceplion \
. ('Wrong Class':TContalner::AdmIlO')))

•. /I F.ned PrecodHlon:
.. /I Deta iled Inlormation 10 Log·Flle
: . /I Exceplion Is Ihrown,whlch Is catched by the

,-_______ ---''-_______ --, : /I Framework (In TDynamlk)
TConl./n., (.b~',.cl)

• Element.Mm~(pObjecl) ;
f-_-'d.,..m....,~..:..(T.,..IS-L=_oc-a.."I.::-.b-I.-· ..:..PO-b....:.J.-C....:.I)-:b.,..OO-I.-a_n ---,----1 .. r.turn (TRUE);

Adm jssjonTes/(TIsLocaleable' pOb;ekl):boolean (abs/rscl) •••• •••••.•.•.
-.......... '"

.' /I Because 01 the applcation 01 Runtlma
.: I/Typechecklng (RTTC). a TRUE Is relurnad lor l TTOOIContalne_, ;~~,...-_-_-_-_-_ -_ -_ -_ '-tF : /I TTool and Its succaadlng classes

Adm IsslonTesl(Tlslocal.able' pObJecIJ:bool.an I .. .'~lu.rny~~(~.bJ~.t,:o?'~); •..•• .• ••••••

Figure 8 Building a Special Container using the Base Class TContainer.

If a user wants to realize a restriction to TSpeciaiTool, the only modification needed is:
boolean TSpeciaITooIContainer: :AdmissionTest(TIsLocateable* pObject)
(return(IsA(pObject, TSpeciaITool)); J

This brief example outlines some of the possibilities the class library offers to a developer.
In a similar way patterns (e.g. for tool assembly plans, setting up a system layout etc.) have
been implemented. These base classes enable a user to develop the resource classes in a
natural way. In combination with the state model the needed flexibility for building resource
objects is given. The dynamic behavior of the system can easily be changed by adapting
dynamics objects.

www.manaraa.com

116 Software Engineering for Manufacturing Systems

4 THE MMS ,,3D" KIT: AN MMS BASED APPROACH FOR
INTERACTIVE)!EVICE DRIVER DEVELOPMENT

In order to accomplish the electronic information interchange between automation devices
like machine tools, robots, etc. on the one side and control computers as well as ONC hosts
on the other side, the control computers and ONC hosts have to be equipped with dedicated
software modules. These software modules normally are called "device drivers". A device
drivers task is to adapt the specific communication interfaces and communication behaviors
of a specific automation device to the control computers or ONC hosts software.

Device drivers are commonly implemented as independent software modules having two
different interfaces for the information exchange.

The first interface is the interface to the controlling and ONC manufacturing application
software modules. To avoid interdependencies between the manufacturing application
software and the device driver software modules and to avoid software customization, the
device drivers need to be implemented in the same manner for all the different automation
devices in the manufacturing environment.

The second interface of a device driver is used to exchange information with the remote
controller of the automation device under control of the manufacturing application software.
Here the information exchange is carried out via the different current device specific
communication platforms.

For the various available automation devices nowadays the device drivers have to be
specifically created. This is caused by the high number of different vendor specific
communication protocols which were developed in parallel in the past as a result of missing
communication standards.

This situation increases the implementation efforts and costs in a way which cannot be
accepted by industrial system users. Therefore in recent times a large financial expenditure
has been committed to the international standardization of vendor independent generic
communication protocols for automation devices. Today as a result of these activities
international standards are available which for example allow remote data base access (RDA),
remote file handling (FT AM) and the remote control of automation devices (MMS with its
associated Companion Standards).

The implementation of these standards in device controlers will decrease the development
expenses because necessary software customizations in the manufacturing application
software can be significantly reduced.

With MMS -that is the Manufacturing Message Specification- since 1990 an international
standard is available solving the communication. problems in manufacturing environments.
But due to the current global situation in the metal-processing industry and due to the
complexity of MMS controller software implementations, MMS communication interfaces
have not found the wide spread use that they should have until now. Even today latest
machine tool control developments are offered with a communication technology based on
obsolete concepts.

But there is no serious doubt that MMS compliance will lead in the long term to automation
devices with generic vendor independent communication interfaces (ESPRIT CCE-CNMA,
1995). Because of the above mentioned reasons and keeping in mind that most of the devices
used in industrial manufacturing environments today are not equipped with MMS interfaces,
at the Machine Tool Laboratory of Aachen University (WZL) a kit for graphical interactive
device driver programming is under development (Figure 9). The kit is called the "MMS 30

www.manaraa.com

Case tools for flexible manufacturing systems 117

kit" and is one of the results of WZL's research activities regarding generic ·device driver
architectures. This architecture should allow one to create device drivers which fulfill the
MMS requirements, which are independent of computer operating systems, which drive
devices with vendor-specific communication interfaces and which provide a generic interface
to the manufacturing application software.

IS~p-;; ~ ihe-MMS~3D KlI - - - - - --I
1 1
1 1
1 1
I I

I '- MMS-based device driver:
____ ...!1e~d!!.dlo~in!e9!:a..!!.o~ ...J

M M S -based com m unication network

Figure 9 Scope of the MMS-3D Kit

4.1 Kit Profile (Functionality)

M M S-com pliant
Device

4.1.1 Communication 1nterface between device driver and manufacturing
application software
In an object oriented way MMS has specified II different communication relevant object
classes and 87 accompanying communication services. Generally, with a small subset of the
provided MMS objects and services described in so-called MMS Companion Standards, the
communication behavior of any automation device can be modeled in a generic way
(Friedrich, 1992). Mainly the MMS object classes VMD (Virtual Manufacturing Device),
Variable, Domain, Program Invocation and Event Management are needed.

The MMS 3D Kit provides modeling tools for the mapping of vendor-specific
communication behavior to dedicated MMS communication objects and services. For this
purpose the device drivers developed with the MMS-3D Kit apply the following MMS
objects and services.

The VMD services Status, Identify and GetNameList are supported. The service Status
allows one to check whether the device is ready for use or not. The Identify service makes it
possible to get detailed information about the connected device. The names of all MMS
objects implemented in the device driver can be requested with the GetNameList service.

The MMS-3D Kit permits mapping of Control-specific variables to MMS variables, which
can be read or written with the corresponding MMS services. Furthermore the MMS-3D Kit
permits the management of domains (e.g. NCIRC programs) within the device driver.

www.manaraa.com

118 Software Engineering for Manufacturing Systems

All Program Invocation services offered by MMS are supported by the MMS-3D Kit. In
addition to that the device driver provides complete program management.

The device drivers permit the feature of the remote creating and deleting of event objects
via a communication channel. With the support of these objects other MMS objects like
variable objects can be monitored. If for example a user wants to be informed about the
change in a specific variable value, the event objects pass the appropriate information to the
MMS Information Report service.

4.1.2 Communication Interface between Device Driver and Automation Device
Today different specific communication protocols are offered by almost any c'ontrol vendor
for the remote control of devices in manufacturing environments. The data packets are usually
transmitted with line control procedures like the lSV/2 or 39641R procedure which are often
used as De-Facto standards in the German industry (Weck, 1995).

The MMS-3D Kit allows the modeling programming of the vendor-specific data packets
described in the device controls operating manuals as well as the accompanying protocol.
Even the programming of vendor-specific line control procedure is possible with tools from
the MMS-3D Kit.

At the moment an open architecture for control systems is under development within
ESPRIT project 6379/9115 "OSACA". A major output of this work is a communication
platform for the interprocess communication within a heterogeneous control hardware is
specified. To integrate OSACA control systems into an OSI environment, device drivers are
required too. The task of these device drivers is the conversion of both MMS and OSACA
protocols and vice versa. The MMS-3D Kit eases the programming of such OSACA-MMS
device drivers.

4.2 Basic concepts

The device drivers developed with the MMS-3D Kit provide a generic, MMS conformant
communication interface to the manufacturing application software. In the following the
processing of an MMS service indication in a device driver is described (Figure 10). The data
included in the service primitive of the service indication are temporarily stored in the global
data area of the device driver. With the help of the MMS identifier received as information in
the service indication, the corresponding MMS communication object is found in the object
manager. The communication object that was found has a reference to an accompanying
transaction net which is executed. The transaction net undertakes for example the task to send
and to receive the packets needed for the communication with the automation device. The
construction of the packets is carried out with the help of the global data. After receiving the
response packet from the device control, a positive MMS response is issued. Otherwise the
MMS response is negative.

www.manaraa.com

MMS
Indication

Case tools for flexible manufacturing systems

Figure 10 Device Driver Architecture.

4.3 Kit Tools (Editors)

119

The previously introduced MMS indication processing within the device driver has to be
programmed completely. It is the task of the MMS-3D Kit to reduce the actual programming
work and the time needed for it and to reduce the programming faults to a minimum. The
MMS-3D Kit provides the user six with tools for the development of the different steps
needed for indication processing in a device driver. These tools are:

4.3.1 Protocol Editor
The protocol editor is used for the graphic programming of line control procedures. The code
programmed with the Protocol Editor is block oriented. Each block has clear pre-conditions,
which must be fulfilled, if the corresponding block shall be executed. A pre-condition can be
e.g. a specific received sign sequence. Within a block, sign sequences can be sent out via the
communication medium or received.

4.3.2 Data Tree Editor
To allow graphically interactive programming of information processing procedures within
the device driver, the creation of data structures is necessary. With the help of the Data Tree
Editor, data structures can be created, dialogue aided and saved in project files. These data
structures can be displayed in a graphic data structure overview and overtaken with a simple
mouse click in the necessary processing dialogues.

www.manaraa.com

120 Software Engineering for Manufacturing Systems

4.3.3 Data Block Editor
With the Data Block Editor functions, can be programmed to copy data in converted formats
from a data stream to device driver specific data structures and vice versa. These functions are
mainly used for developing encoding and decoding procedures for packets.

4.3.4 Key editor
The task of the Key Editor is to assign clear recognition keys to specific packets so that an
automatic identification for the decoding of the packets and further processing becames
possible.

4.3.5 MMS Object Editor
The MMS object editor allows one to create MMS communication objects, which handle the
object related information processing within the device driver. For the modeling of internal
information processing, transaction nets are used. All the MMS communication objects own
one transaction net. The task of the transaction net is to request necessary information from
the attached device for further processing in single actions with the help of the device-specific
communication medium.

There are differences in the identification of the various MMS object classes. MMS
variables created with the editor have an unambiguous identifier and belong to specific local
variables in the global data of the device driver. The attached transaction nets of variable
objects are specifically for each object. This is different for the MMS object classes Domain
and Program Invocation. Objects of these two MMS classes are created with different
identifiers during run time and not during the programming of the device driver. Therefore the
related transaction nets are common for each class and not for each instance.

4.3.6 Transaction Net Editor
Protocol sequences can be programmed graphically and interactively with the Transaction Net
Editor. These transaction nets are assigned to MMS communication classes or to single MMS
communication objects. From examinations carried out at the WZL, elementary modeling
elements were derived which can be used for the programming. If there is a special modeling
element needed, which is not present in the editor, it can be designed with the help of user
dialogues.

Concluding the MMS-3D Kit is a migration aid that allows one to program graphically and
interactively MMS-based device drivers needed for the integration of manufacturing devices
with vendor-specific communication interfaces in OSI-based communication networks. In the
future this kind of integration work will no longer be needed and heterogeneity will no longer
be a problem if all manufacturing devices are OSI-compliant.

5 CONCLUSION

Up to now there is a significant lack of case tools which are designed and applicable for FMS
software. The systems presented in this paper support new approaches to the development of
such case tools. CellDesign facilitates the development of customer specific cell control
software, CASCADE provides a framework for shop floor control applications and the MMS-

www.manaraa.com

Case tools for flexible manufacturing systems 121

3D KIT enables a user to integrate machine tools incompatible with the Manufacturing
Message Specification. The tools presented help to reduce development time and cost as well
as the implementation effort of individual software solutions. Future research activities will
focus on increasing reusability of software and extending the functionality of the case tools
and the provided class libraries.

6 REFERENCES

Booch, G. (1991) Object Oriented Design With Applications. The Benjamin/Cummings
Publishing Company, Inc.

Chen, J.B. et.al. (1995) Pursuing safe polymorphism on OOP. in Journal of Object-Oriented
Programming, March-April.

ESPRIT Consortium CCE CNMA (1995), CCE: An Integration Platform for Distriubuted
Manufacturing Applications. Springer Verlag

Frey, V. (1992) Planung der Leittechnik fiir flexible Fertigungsanlagen. Dissertation
Universitat Karlsruhe.

Friedrich, A. (1992) Offenes DNC-kommunikationssystem fiir numerische gesteuerte
Arbeitsmaschinen.Reihe 20 VDI Verlag

Gamma, E. et.al. (1995) Design Patterns - Elements of Reusable Object-Oriented Software.
Addison-Wesley.

Kohen, E. (1986) Adaptierbare Steuerungssoftware fiir Flexible Fertigungssysteme.
Dissertation, Aachen University of Technology.

Lange, N. (1993) Dezentrale universelle Steuerungsarchitektur fiir Flexible
Fertigungssysteme. Dissertation, Aachen University of Technology.

Meyer, B. (1994) Reusable-Software - The base objectoriented component libraries. Prentice­
Hall.

Pree, W. (1995) Design Patterns for Object-Oriented Software Development. Addison­
Wesley ACM-Press.

Pritschow, G. (1991) Leit- und Steuerungstechnik in flexiblen Produktionsanlagen. Carl­
Hanser Verlag, Miinchen.

Schmid, H.A. (1994) Kundenspezifische Software zur Fertigungsautomatisierung durch
Wiederverwendung eines objekt-orientierten"Baukastens. CIM Management 6/94 pp.50-
54

Rumbaugh, J. et.al. (1991) Object-Oriented Modelling and Design. Prentice Hall.
Stroustrup, B. (1992) The C++ programming language. Addison-Wesley.
Weck, M. (1995) Werkzeugmaschinen-Fertigungssysteme Band 3.2, Automatisierung und

Stuerungstechnik. VDI-Verlag, Diisseldorf
Wirfs-Brock, R. et.al. (1990) Designing Object-Orinted Software. Prentice Hall.
Zipper, B. (1994) Das integrierte Betriebsmittelwesen - Baustein einer flexiblen Fertigung.

Forschungsberichte iwb, Springer-Verlag, Berlin.

www.manaraa.com

122 Software Engineering for Manufacturing Systems

7 BIOGRAPHY

The Authors:
Prof. Dr.-Ing. Dr.-Ing. E. h. Manfred Week, born in 1937; head of the Chair of Machine Tools
since 1973 and member of the directorate of the laboratory for Machine Tools and Production
Engineering (WZL) of the Rheinisch Westfiilische Technische Hochschule Aachen (RWTH).
Dipl.-Ing. Jorg Friedrich, born 1964, studied Mechanical Engineering at the RWTH Aachen,
engaged in scientific research at the WZL since 1991, Chair of Machine Tools, Controls of
Manufacturing Systems group.
Dipl.-Ing. Thomas Koch, born 1963, studied Mechanical Engineering at the RWTH Aachen,
engaged in scientific research at the WZL since 1989, Chair of Machine Tools, Controls of
Manufacturing Systems group.
Dipl.-Ing. Rene Langen, born 1968 studied Mechanical Engineering at the RWTH Aachen
and the Center for Advanced Manufacturing, Clemson S.c., USA, engaged in scientific
research at the WZL since 1994, Chair of Machine Tools, Controls of Manufacturing Systems
group.

www.manaraa.com

11

An Environment and Algorithm for FMS
Controller Testing t

Z.Deng
Narvik Institute o/Technology
Teknologiveien 10,8501 Narvik, Norway
Tel: 47-769-22181 Fax: 47-769-44866
E-mail: Ziqiong.Deng@hin.no

Z. Bi and Y. Zhu
Division #503
Nanjing University 0/ Science and Technology
Nanjing 210094, P. R. China
Tel: 86-25-4315615 Fax: 86-25-4431622

Abstract
The authors have developed a physical environment for testing controllers of Flexible
Manufacturing Systems (FMS). In this paper, firstly, the testing mechanism is discussed.
Secondly, the architecture of the testing environment is illustrated. Finally, an algorithm based
on a model built for testing the correctness of the series of control commands from a tested
FMS controller is given. A modelling methodology called Structured Macro Petri Net (SMPN)
conceived by authors is described briefly.

Keywords
Software engineering, flexible manufacturing system (FMS), control engineering, software
testing, system modelling, Petri net (PN), structured macro Petri net (SMPN)

t This work is supported with the pre-research foundation by Science and Industry Committee of China.

www.manaraa.com

124 Software Engineering for Manufacturing Systems

1 INTRODUCTION

For many manufacturers of consumer goods, flexible manufacturing and assembly is the only
way in which they can efficiently compete in the market-place with a range of product variants.
This is because clients are increasingly looking for products tailored to their own needs rather
than mass-produced products (Rembold, 1993). Therefore, for producing such product
variants, flexible manufacturing systems (FMS) are required.

Flexible manufacturing systems typically consist of (Deng, 1989):

• several manufacturing equipment (machines) such as CNC machining centres, CNC
measuring machines, washing machines, etc.;

• part transport and handling equipment such as automatic guided vehicle (AGY) together
with part loading and unloading stations, central part buffers, and local part buffers
dedicated to an individual manufacturing machine to carry out efficient part-jlow (or called
job-flow) tasks within the FMS system;

• tool transport and exchange equipment such as movable robots together with tool loading
and unloading stations, central tool base, and local tool magazines for each manufacturing
machine to carry out efficient tool-jlow within the FMS system.

All actions that happen among the part-flow procedure or the tool-flow procedure in an
FMS are controlled by the FMS controller. In other words, the FMS controlIer makes a series
of decisions and issues a series of commands to control the part-flow and/or the tool-flow in a
series of time moments.

Since the early 1980s, there have been more and more FMSs installed in enterprises, and a
number of FMS controlIers developed by various developers. It seems that there exists a
growing tendency of installing FMSs and developing various controllers for those FMSs.

As is well known, developing an FMS controller involves a complicated task in hardware
and software development. Especially in the software development, if many bugs exist in the
package, probably it may cause a disastrous result while the FMS is running. Therefore, the
authors have launched a project since 1991 to develop a testing environment for testing the
FMS controlIers which may be developed by various developers. In other words, the authors
wanted to create a testing centre where any developer or client of an FMS controller can ask
the testing centre for the testing and/or debugging of his/her FMS controller. Meanwhile, if
someone is willing to develop an FMS controller before his/her physical FMS system
installation, he/she may also make use of the facilities of this testing centre to develop his/her
FMS controller. It also means that we have to create a virtual equipment environment where
the FMS configuration composed of CNC machines, part-flow sub-system, tool-flow sub­
system, etc., can be configured for folIowing purposes (Deng, 1995):

• receiving the sequence of control commands from an FMS controlIer being tested;
• executing the control commands;
• replying with a normal message to inform the FMS controlIer that a control command is

executed properly or;
• replying with a abnormal message in random mode to inform the FMS controlIer that

certain malfunction is happening in the facilities.

www.manaraa.com

An environment and algorithm for FMS controller testing 125

After years' work, the first stage of the testing environment is accomplished. In what
follows in this paper, we will describe: (1) the mechanism of FMS controller testing, (2) the
architecture of the testing environment, (3) the model and algorithm for testing real-time
control function of a tested FMS controller, and (4) macro structurisation of places and
resources.

2 MECHANISM OF FMS CONTROLLER TESTING

Generally, software production broadly follows the phases: requirements, specifications,
design, implementation, integration, maintenance, and finally, retirement (Schach, 1990).
After finishing the development of each of the first three phases, verification is required. After
each of both the implementation phase and the integration phase, testing is required to assure
the quality of that phase's solution. During the implementation phase's testing, the modules are
tested. During the integration phase's testing, there are three types of testing required, namely
integration testing, product testing, and acceptance testing (Schach, 1990). The purpose of
integration testing is to check that the modules are combined together correctly to achieve a
software product that satisfies its specifications. When the integration testing has been
completed, product testing is performed. The functionality of the product as a whole is
checked against the specifications. The final aspect is acceptance testing. Here the client enter
the picture. The software is delivered to the client, who tests the software.

Input (i) Tested FMS Output (0)
controller

(functionality P)

P=f(i.o)

Figure 1 Black-box testing for an
FMS controller.

feedback
data

. FMS
configura­
tion data

• Control
command

• Copying
feedback
data to

TEST_SYS

Figure 2 Testing principle of FMS controller's
testing.

As mentioned above in the introduction, our desire is to create a testing environment
where developers of various FMS controllers can ask the testing environment for the testing of
hislher FMS controller. Because a wide variety of FMS controllers are developed outside the
testing environment, and the developments are carried out by various groups other than the

www.manaraa.com

126 Software Engineering for Manufacturing Systems

group working in the testing environment, it is not usually possible for the group who works in
testing environment to understand the internal software structure of the various tested FMS
controllers. That is to say, our work is only involved in product testing and/or acceptance
testing if a client wants to use the environment for his/her acceptance testing. Therefore, the
mechanism conceived for FMS controllers' testing in our environment is limitedly to the
testing of functionality which is specified in the specifications. In other words, the testing
environment copes with a tested FMS controller as a black-box as shown in Figure I.

Considering the relationship between the tested FMS controller and the testing system in
our environment, the testing principle can be expressed and depicted as shown in Figure 2
where the testing system is composed of:

• a test-executing sub-system (or called TEST_SYS for brevity);
• an FMS configuration and emulation sub-system (or called STUB for brevity).

Initially, one should make use of the STUB (see lower part of Figure 2) to configure the
FMS facilities, part-flow system, and tool-flow system which will be controlled by the tested
FMS controller. The FMS configuration data created is then transferred to the TEST_SYS
where the FMS configuration data is stored in the database and is ready for use by the
TEST_SYS. According to both the functional specifications of the tested FMS controller and
the stored FMS configuration data, the TEST_SYS creates various testing-case data (see
upper part of Figure 2) to drive the tested FMS controller.

The content of the testing-case data includes the production data or, say, the job
assignment which consists of the sets of data included in Tables I through 4.

Table 1 Job assIgnment
Priority of Type of No. of Batch No. of

No. of job job Due date part blank quantity process plan

.J

Table 2 Process Ian
No. of No. of No. of

Table3 0
No. of NC ro ram Duration of 0

uirement
No. of NC ro ram No. of tool Tool life

www.manaraa.com

l
I

An environment and algorithm for FMS controller testing 127

The FMS controller being tested starts to issue its first control command to the STUB
according to the testing-case data. Meanwhile, the STUB emulates the execution of the control
command, copies the control command to the TEST _SYS, transmits to the tested FMS
controller either a normal feedback data, or an abnormal feedback data, and copies as well the
feedback data to the TEST _SYS. From the second command on, the FMS controller issues its
control commands according to not only the testing-case data, but also the feedback data.

3 ARCHITECTURE OF TESTING ENVIRONMENT

Creation of a testing environment involves architectural consideration concerning both the
hardware environment and the software environment. The architectural consideration for the
hardware environment should address the requirement for serving various sources of FMS
controllers which may reside on various types of computers such as Sun workstations, VAX
workstations, SGI workstations, HP workstations, and PC computers. Therefore, we have
used the hardware configuration as shown in Figure 3.

VAX4000/60 VAX4000/60 SunlPX SGI PG-486
r------l
I HP I

wor1<- wor1<- compu- I wor1<- I

workstation wor1<station station station ler I station I

Used as Used as Used as Used as
I

Used as
I

I I

Used as residing residing residing residing I residing I

: computer: computer computer computer computer
for FMS for FMS forFMS for FMS I forFMS I TEST_SYS
controller controller controller controller ~ 9.0.!'!!Q)i!lr...:

TCP/IP and DECnet
~ ~ I ... I

PG-486 PG-486 PG-486 PC-486
com- com- com- com-
puter puter puter ••• puter

Used as Used as Used as Used as
part-flow tool-flow facilities facilities
emulator emulator emulator emulator

Figure 3 Hardware configuration of testing environment for FMS controllers

The testing-executing sub-system (TEST_SYS) shown in Figure 2 had been installed on
one of the VAX 4000/60 workstations as shown in the upper left comer of Figure 3. The
STUB had been installed on several PC-486 computers as shown in the lower part of Figure 3.
To serve as the residing computers for various sources of FMS controllers, one Sun IPX
workstation, one SGI workstation, one PC-486 computer, together with one other VAX
4000/60 workstation had been installed. One HP workstation is planned to be installed soon.

www.manaraa.com

128 Software Engineering for Manufacturing Systems

The architectural considerations for the software environment had led us to adopt the
NAS (Network Application Support) platform from Digital Equipment Co. as shown in
Figures 4 and 5 (Digital Equipment Co., 1990).

The NAS platform can be used to support a compatible network of multivendor products.
As shown in Figure 4, it provides compatibility among different operating systems such as
UNIX, VMS, OS/2, MS-DOS, and etc .. As well, it provides compatibility among different
databases such as RDB, Ingres, SyBASE, and Oracle. Regarding NAS, we find that it is
suitable for meeting our objectives for testing various types of FMS controllers which may be
required to work on different computers and databases.

< NAS environment

------r--------

Figure 4 NAS environment for multivendor
support

Productivity Tools
Application Integration

System Software

Network
Hardware

Figure 5 NAS environment for layers

4 ALGORITHM FOR TESTING REAL-TIME CONTROL FUNCTION
OF A TESTED FMS CONTROLLER

As shown in Figure 2, the TEST_SYS has to

• create a complete set of testing-case data;
• check the correctness of the series of control commands both in normal and in abnormal

situations;

and the STUB has to

• emulate the FMS operation;
• generate either normal feedback data, or abnormal feedback data.

www.manaraa.com

An environment and algorithm for FMS controller testing 129

Obviously, we have to conceive algorithms for realising each of the above tasks. In this
paper, we only introduce an algorithm for correctness checking of control commands. Other
algorithms can be referred to Huang (1995).

To check the correctness of the series of control commands, at first there is a need to
create an analytical behaviour model for the TEST_SYS. This model should

• be independent of models which work in tested FMS controllers;
• exactly express the dynamic behaviour of FMS systems which are controlled by tested FMS

controllers;
• be as simple as possible for easing the modelling and/or the model extension when needed.

We had conceived a modelling methodology for the TEST_SYS based on Petri-net (PN)
theory and methodology (Peterson, 1981). As is well known, PN methodology makes use of
places and transitions to graphically build a model in which tokens flow. If we consider the
TEST_SYS model where attributes of tokens are related to concrete resources such as jobs (or
say, parts), tools, manufacturing machines, etc., as one probably does normally, then here we
may encounter the difficulty of unacceptable scale and complexity of the model built with the
quantity of resources increasing.

To avoid such problems, we find that there exists a limited number of basic event-types
which may happen in an FMS system as follows:

• in job-flow: a job is loading to or unloading from the FMS;
a pallet together with job is transported from one machine to another

machine;
a pallet together with job is transported from a buffer to a workstation;
a pallet together with job is transported from a workstation to a buffer;
a inachining operation is started or finished;

• in tool-flow: a tool is loading to or unloading from the FMS;
a tool is transported between toolloadinglunloading station and a local

tool magazine;
a tool is transported between toolloadinglunloading station and central

tool magazine;
a tool is transported between a local tool magazine and central tool

magazine;
a tool is transported between two of local tool magazines.

Therefore, we firstly structure the places for the TEST_SYS's model, then define the structure
of transitions. That is to say, we frrstly defined a modelling methodology called SMPN
(structured macro Petri-net) methodology with a procedure as follows:

• Resources are classified according to features of their dynamic attributes;
• The sets of places and transitions are structured abstractly to reflect the basic events and

related system statuses;
• The global structure of the whole model is then built based on the cause-effect relationship

of those basic events.

www.manaraa.com

130 Software Engineering for Manufacturing Systems

Then, using the above modelling methodology, a SMPN model for our testing system was
built. In this paper, we only introduce the sub-model for job-flow as shown in Figure 6. The
meanings of various acronyms of both places and transitions in the Figure are explained as
follows:

Figure 6 Structured macro Petri-net (SMPN) model for job-flow of FMS for TEST_SYS.

www.manaraa.com

• for transitions,

t 1, t1 '
a, t2'

t3, t3'

t4, t4'
t5, t5'
t6, t6'
17, t7'

• for places,

U,UJ
PJI, PJ2

Tll, TJ2

P
WO
Wl,W2
CJI, eJ2

TW2
PF, T, B, M

An environment and algorithm for FMS controller testing

starting event (t 1) and finishing event (t I ') of a job-loading process;
starting event and finishing event of a process of picking a pallet from a

machine;
starting event and finishing event of a process of picking a pellet from a

buffer;
tarting event and finishing event of a job-machining proces ;

starting event and finishing event of a job-unloading process;

131

starting event and finishing event of a process of sending a pallet to a buffer;
starting event and finishing event of a process of sending a pallet to a

m""hinl" .

processes of loading (U) and unloading (UJ) a job;
processes of that a conveyer (AGy) picks up a pallet from a machine (pJ I)

or from a buffer (PJ2);
processes of that a conveyer (AGV) sends a pallet to a machine (TJI) or

to a buffer (TJ2);
process of a job-machining;
status of a job which is outside the system;
statuses of a job which is on a machine (W I) or on a buffer (W2);
statuses which represent that a conveyer has got a pallet from a machine

(CJ I) or from a buffer (CJ2);
status of a tool in a local magazine;
available statuses of a fixture (PF), a tool (T), a buffer (B), and a machine

eM).

For brevity, we do not introduce the tool-flow model in this paper. It can be referred to Bi
(1995) for details.

www.manaraa.com

132 Software Engineering for Manufacturing Systems

5 MACRO STRUCTURISATION OF PLACES AND RESOURCES

5.1 Methodology

• First, structure resources
• then, structure places

5.2 Structures of Resources describe the statuses of resources.

• 81: Pallet resource

{
Code of pallet-type

Flag of available status
Code of po ition where the pallet may

reside in
Code of pallet status
Job-code on pallet
Start-time of present status
}

* Different job may be assigned different
pallet-type.

* available, unavailable, or malfunctioned
* Code '0' means that the pallet resides

outside the system
* occupied or not occupied
* when the pallet is occupied by the job

• 82: Position Resource which can be used for Pallet Residing in (PRPR)

{
Type-code of equipment which the

position is belonged to

Flag of available status
Code of equipment which the position

is belonged to
Code of position status
Code of pallet when it occupies the

position
Start-time of pre ent status
}

* including types of loading/unloading (UU),
buffer. machining. and transportation
equipment.

* available, unavailable, or malfunctioned

* occupied or not occupied

• 83: Tool resource which includes UU tool, transportation tool, and machining tool

www.manaraa.com

An environment and algorithm for FMS controller testing 133

• S31: UU tool resource

{
Code of tool-type

Flag of available status
Code of tool status
Code of equipment which is using the

tool
Start-time of present status
}

• S32: transportation tool resource

{
Code of tool-type

Flag of available status
Code of tool status
Code of pallet which is using the tool
Start-time of present status
}

• S33: machining tool resource

{
Code of tool-type

Flag of available status
Code of tool status
Code of equipment which is using the

tool
Start-time of present status
}

• S4: Job resource

{
Code of job-type

Code of finished machining operation
within the machining process

Code of pallet which is used by the job
Start-time of present status
}

* Different equipment may be assigned
different type of UIL tool.

* available, unavailable, or malfunctioned
* in use or not in use

* Different pallet may require different type of
transportation tool.

* available, unavailable, or malfunctioned
* in use or not in use

* Different job may require different type of
machining tool.

* available, unavailable, or malfunctioned
* in use or not in use

* It can be used for searching the information
of job machining process.

www.manaraa.com

134 Software Engineering for Manufacturing Systems

• S5: Workstation resource

{
Code of workstation-type

Code of UU tool-type required by the
workstation

Code set of PRPR which the
workstation can supply

Rag of requiring machining tool
Occupying-status of machining

position

Code of job which is occupying the
machining position

Start-time of present status
}

* including types of loading/unloading (lJU),
machining. washing. and measuring
workstations.

* special code when not required

* It means how many PRPR the workstation
possesses.

* required or not required
* A machining position, work-table of a

machine for example is occupied by a
pallet or not.

5.3 Structures of Places can be derived from structures of resources.

• Structure PF: (SI ~ PF)

{
Code of pallet-type

Code of UU position where the pallet
resides in

Start-time of present status
}

• Structure ofWO: (S4 ~ WO)

{
Code of job-type
Start-time of present status
}

• Structure of M: (S2 ~ M)

{

* Different job may be assigned different
pallet-type.

* Code '0' means that the pallet resides
outside the system

Code of equipment which the position is belonged to
Start-time of present status
}

www.manaraa.com

An environment and algorithm for FMS controller testing

• Structure ofT: (S31-7 T)

{
Code of tool-type
Code of equipment which is using the tool
Start-time of present status
}

• Structure ofLJ: (SI, S31, S4, and S5 -7 W)

{
Code of job-type
Code of UU position
Code of UU tool being used
Code of pallet-type
Start-time of UU process
}

• Structure ofPJl: (S2 and S32 -7 PJl)

{
Code of transportation tool-type
Code of pallet which i u ing the tool
Code of position which the pallet resides in
Start-time of pre eot status
}

• Structure of WI: (S2 -7 WI)

{
Type-code of equipment
Flag of available status
Code of position status
Code of pallet when it occupies the position
Start-time of present status
}

• Structure of CJl: (S2 and S32 -7 CJl)

{
Code of transportation lool-type
Code of pallet which i u ing the 1001
Code of position which the pallet reside in
Start-time of pre ent status
}

135

www.manaraa.com

136 Software Engineering for Manufacturing Systems

5.4 Example

An FMS configuration shown in Figure 7 is composed of:

• a UU workstation with manual UU operation;
• a CNC machining workstation possessing two local positions for pallet residing;
• a washer workstation possessing without local position;
• a buffer consisting of four positions for pallet residing;
• an AGV with one position for pallet residing;
• three jobs a, b, and c waiting for entering the system;
• two pallets with one at UU workstation and the other at one of the four positions of

the buffer.

uu

~T
Pallet
PI

washer[!] ~_ _ m I D CNCI
m

~~ji--@]-6--"'0-----1~--]----1
: position 7 Buffer:
~ ___________________________ J

Figure 7 An exemplified example of FMS

www.manaraa.com

An environment and algorithm for FMS controller testing 137

After initiaIisation

• Numbers of resource structures, SI, S2, S3 (S31, S32, S33), S4, S5 are

2,9,2 (1,1,0),3,3

• Number of place structures (tokens), PF, WO, M, T, U, WI, PJ1, eJ1 derived from
resource structures are

1,3,1, (1,1,0),0,0,0,0
tl firing (start to load job 'a')

• Job 'a' is loading.
• Token numbers in the input places of transition tl - PF, M, and T are all decreased by

1 and become to be

0,0, (0,1,0).

• Token number in the output place U increases with 1 and is now equal to L
• The value of the token structure becomes to be

U: {a, I, TI, PI, tI}

tl' firing (fInish the loading of job 'a')

• Token numbers in the input places of transition tI' - U is decreased by 1 and become
tobeOnow.

• Token numbers in the output places of transition tl ' - WI and T both increase with 1.
• The values of the token structures become to be

WI: {UU workstation, available, occupied, PI, tl '}
T: {Tl, UU workstation, tl'}

t2 firing (transportation tool T2 start to fetch pallet PI with job 'a' loaded on it)

• Token numbers in the input places of transition t2 - both WI and T are all decreased
by 1 and become to be 0 and (I, 0, 0) now.

• Token number in the output place of transition t2 - PJ1 increase with I and becomes
to be L

• The value of the token structure becomes to be

PJ1: {T2, PI, I, t2}

www.manaraa.com

138 Software Engineering for Manufacturing Systems

t2' firing Gob 'a' has been fetched onto the transportation tool)

• Token number in the input place of transition t2' - PJI is decreased by 1 and become
to be 0 now.

• Token number in the output place of transition t2' - CJ 1 increase with 1.
• The value of the token structure becomes to be

CJI: {T2, PI, 9, t2'}

6 CONCLUSION

The SMPN modelling methodology conceived by authors gains the benefits of: (1) the
structured places and transitions represent a high level of abstraction; the values of structures
of tokens are able to contain more information than that contained by tokens of conventional
Petri net method; (2) the SMPN model relates only to the basic events that happen in an FMS,
therefore there are no influences to the scale and complexity of the model when the quantity of
jobs, devices, buffers, and alternative machining routes of jobs increases. Consequently a
succinct SMPN model can be built.

The testing environment created by the authors is now running at its beginning stage. A
few FMS controllers have been tested in this environment as case-studies and test-beds for the
environment. It is found that the environment is capable of finding faults within the tested FMS
controllers covering the following items: (1) unreasonable or false transition commands when
simulating both normal situations and resources malfunctions, (2) violation of dispatching­
priority rules, and (3) deadlock in job-flow and tool-flow.

For an FMS controller, one other functionality is the scheduling capability. The authors
have not finished the research on how to test the scheduling capability yet. This is what the
authors want to do in the next stage.

7 REFERENCES

Bi, Z. and Zhu, Y. and Deng, Z. (1995) Theory and Application of SMPN Modelling
Methodology and Algorithm for FMS-controller Testing, Scientific report #20, Nanjing
University of Science and Technology.

Deng, Z. and Wang, L. and Liu. X. (1989) A Study of Modelling Part Flow and Tool Flow for
FMS, Software for Manufacturing, North-Holland.

Digital Equipment Co. (1990) Manufacturing Enterprise Handbook.
Huang, X. and Deng, Z. (1995) Algorithm for Generation of Testing-case in FMS-controller

Testing, Scientific report #10, Nanjing University of Science and Technology.
Peterson, J. L. (1981) Petri Net Theory and the Modelling of Systems, Prentice-Hall, Inc ..
Rembold, U. and Nnaji, B. O. and Storr, A. (1993) Computer Integrated Manufacturing and

Engineering, Addison-Wesley.
Schach, S. R. (1990) Software Engineering, Aksen Associate, Inc ..
Zhu, Y. and Bi, Z. and Deng, Z. (1995) Testing Mechanism for FMS-controller Testing,

Scientific report #10, Nanjing University of Science and Technology.

www.manaraa.com

12

Reusability of Function-oriented and
Object-oriented Master Control Software

J. Uhl, J. Driller
Institute of Control Technology for Machine Tools
and Manufacturing Units (ISW)
Seidenstr. 36, D-70174 Stuttgart, Germany;
Tel. +497111121-2420, Fax +49 7111121-2413;
Email: [Joachim.uhlljuergen.drillerJ@isw.uni-stuttgart.de

Abstract
Master control systems of the 5th generation are characterized by a change in paradigm in
manufacturing technology. This change in paradigm is adapted automation, decentralized or
human-centered. The necessary application flexibility and the possibility of forming variants
require a high reusability of master control software, as well as a systematic development
process. This paper shows as an example the software techniques which have been selected to
develop a decentralized structured object-oriented master control system. A comparison is
made with function-oriented master control systems.

Keywords
Object -orientation, master control system, software technology, reusability

1 INTRODUCTION

Control software must be viewed as a machine element which is to run through a systematic
design and production process. Methods, procedures and development tools are used in this
software design and production process (Siewert et al., 1994). This is generally called
Software Engineering. However what is understood by software technology is application­
oriented software engineering which uses methods and procedures tailored to the application.

In the development of control software, a differentiation is made between the application of
software techniques for PLC and for NC control software in the machine control level and for
master control software in the master control and cell control level. This paper is concerned
with software techniques in the master / cell control level.

www.manaraa.com

140 Software Engineering for Manufacturing Systems

Apart from the general requirement of creating control . software with systematic,
engineering procedures and methods, the development of new software structures for master
control systems of the 5th generation (Storr, Uhl, 1995; Pritschow et al., 1995; Driller, 1995;
Adiga, 1993; Nof, 1994; Veeramani et al., 1993) influences in particular the development and
application of software techniques for the master I cell control level.

2 REQUIREMENTS MADE ON MASTER AND CELL CONTROL
SYSTEMS AND THE REQUIREMENTS RESULTING FROM THESE
MADE ON THE SOFTWARE TECHNOLOGY

Requirements made on the 5th generation of master and cell control systems are an individual
automation adapted for each application, a high flexibility, a simple adaptation to changes
in in-house order control and resources (in particular manufacturing equipment) and a high
reusability with the option of forming variants for a favorable cost-profit ratio of the master
control software (Storr, Uhl, 1995; Uhl, 1995; Driller, 1995). These requirements can be
fulfilled by (Uhl, 1995; Driller, 1995):
• a new software structured for control systems which is essentially reflected in engineering

"physical" equipment and
• a development of master system applications based on a software modular system.

Figure 1 compares the software structure of a conventional master control system of the 4th
generation (Brantner, 1993; Siewert, 1994) with function-oriented program modules and a
database separated from the program modules of the decentralized, object-oriented software
structure of a master control system of the 5th generation.

"""'**'II omng_ """_ ,,,, _ _ ... , (MC)

Evlll'ltS. DB'a ~ OrdBm. Data

Figure 1 Comparison of software structures

~
decenlnlllzed ItrvctUred 8 object oriented masler

11 L.:J 0P2 11; conlJ'Ol .yolern

• t.IC, •

~:'''' ~~ OP3
.... I ~
QlJnl8rI eml

www.manaraa.com

Function-oriented and object-oriented master control software 141

A decentralized software structure must be differentiated conceptually from a
decentralization in machine technology and a decentralization in an in-house order
control (organizational) and refers to the division of coordinating master control functions
such as order execution of software objects. Apart from coordinating master control functions,
a master control system also possesses executive master control functions such as the DNC
master control function.

While mostly traditional procedures (e.g. application of the waterfall model) and methods
(e.g. structured analysis, entity-relationship, structured design, etc.) of software engineering
were used for master control systems of the 4th generation, then in the master control systems
of the 5th generation, methods and procedures adapted correspondingly are required in order
to create time-effectively an inexpensive software.
The methods and procedures must guarantee (Storr, UbI, 1995; UbI, 1995; Driller, 1995):
• a structuring of the software as per flexible production system (FPS) components with a

systematic, engineering decomposition of the FPS components and the representation of
these relationships (see also Fig. 2),

• a structuring of the software according to master control functions,
• high consistency of the description methods used, i.e. a consistent application of

information in all phases of the software engineering process,
• support of a simple reusability of the master control software from a software modular

system,
• master control software which is easy to understand.

Figure 2 shows an example of the structure of the DNC master control function for a
manufacturing system with two machines. The objects of the representation have been derived
from a physical view of the manufacturing system to be automated.

A library is used as development platform to support the development work. The platform
contains software for communication (between objects and also between processors), a
database and help functions (e.g. list administration). The library will be used by all software
developers for developing master control software. A commercially supported platform must
be used. The main advantage of such a platform is the guarantee of computer independence
arising from the encapsulation of operating system routines etc. This relieves software
developers of routine programming work and he/she can then concentrate on the actual
application. Another advantage is that the library routines will have been well tested, so
software quality should improve.

www.manaraa.com

142 Software Engineering for Manufacturing Systems

machine tool 1

machine tool 2

Figure 2 Example of the structure of the DNe master control function

Application software

NC

electronic components

Figure 3 Application and structure of a platform

NC
kernel
tunc-

www.manaraa.com

Function-oriented and object-oriented master control software 143

3 SOFTWARE TECHNOLOGY FOR MASTER CONTROL SYSTEMS
OF THE 5TH GENERATION

3.1 Procedures for creating a master control system based on a modular
software system

Development of a master control software using systematic design is required. A master
control system of the 5th generation structured according to objects offers a good starting
point due to its orientation towards "physical" equipment. This orientation facilitates the
"design" of future master control systems for specific applications. The basis for this approach
is the application of procedures and methods of object-oriented software engineering.

Figure 4 shows a procedure for developing an application-specific master control system in
two stages. The development of the master control software is to be differentiated from the
generation of the master control system. The procedure can be classified in the object­
oriented software life cycle with the phases system analysis, system design, coding and
module test as well as system test and use. The aim is the development of classes of the class
library of the master control software. The classes of the class library of the development
platform which are usually only available as source or binary code must already be taken into
consideration in the module design and are included using reverse engineering.

class hbrary
master control

software

.... accessto
class library

requirements
onmasler g

oontrOi 'unctions

inspection of existing classes
and

devolopment of new dasses
for master control systems

generating Ihe objects of the
master control system

transitions between tasks

Figure 4 Procedure for creating a master control system

class library
pl.Horm

Syslem

~

ModI.II design

Figure 5 shows how the phases of the software engineering process will proceed. The
initial development and the follow-on development of a master control system are
differentiated as well as an incomplete and a complete master control system class library
for generating the objects of a master control system.

www.manaraa.com

144 Software Engineering for Manufacturing Systems

Initial or lollow-on developmenl wilh an
Incomplele master conlrol system class library

Follow-on development with a
complete master centrol system class library

class
library

plalform

Figure 5 Differentiation of a development with an incomplete and a complete class library
for the classes of the master control software

If the class library does not exist for the classes of the master control system in an initial
development or is not complete in a follow-on development for a different application, all
phases of the software engineering must be executed_ A new development or adaptation of
classes of the master system class library is necessary. If the control system can be created
completely from the master system class library for a follow-on development for another
application, then phases of the software engineering process as seen on the right of Fig. 5 can
be skipped. Therefore in the system design phase, for example, the objects required and
instantiated from the class library for the master control system only have to be checked and
defined.

Figure 6 describes the systematic steps for developing a master control system. Note that
the application-specific steps
• requirements made on FPS components and
• requirements made on master control functions

are the starting point. The transitions between the steps are progressive. The procedure
includes frequent forward and backward movement between the steps.

The following are essential techniques in system analysis and system design:
• Decomposition of executive master control functions and FPS components
• Decentralization of coordinating master functions to FPS components.

www.manaraa.com

Function-oriented and object-oriented master control software 145

class i bnlfY
master controt _AI

~ requirements
l1li%' iJ!j:). on FPS

mopping 01 FPS components
ontodasses

_traJi1a1ion 01 COO<dnating
master control tulc:bons

to FPS components

decomposition 01 executive
master control functions
and FPS components

requintments on lIJ
mas1ar control tunct. -c:::r
select moster control functions
and date"""ne SlJb funG1lons

determlnolion of control flow

trimming of dass hierarchy and classes
coding and tl!$ting 01 cIossas

inlegratlon of master conUoi functions

generBtng the cbjocls 01 the
mQler eont.roI SY51em

... access to transitions between tasks
class 1 brary

Figure 6 Systematic steps for developing classes for a master control software

3.2 Descriptive methods used

The descriptive methods that are used have a considerable influence on the consistency
achieved between a system analysis, system design and coding. The development platform has
an influence on the consistency between module design and coding. An important prerequisite
for consistency is that an object-oriented descriptive method and an object-oriented
development platform are used, i.e. that objects, classes, inheritance, aggregation and
association are supported.

The descriptive method of G. Hooch (Booch, 1991) has been used in the core phases,
where actual software generation occurs, due to:
• its high consistency up to the option of code generation,
• a suitable notation (e.g. possibility of representing objects, classes, inheritance, aggregation

and association relationships)
• its intelligibility etc.
In the following discussion it is assumed that the reader is familiar with the Booch notation.
This however has been extended by Nassi-Shneiderman diagrams for the structured
formulation of the methods of a class. Figure 7 shows the descriptive methods used in the
various phases.

Figure 8 shows an example of the application of the descriptive methods for the
decomposition of the FPS components of the machining center together with the DNC master
control function from Figure 3. The decomposition is made corresponding to the
decomposition during the development of PLC software in the machine control level. State
diagrams are assigned to each class. Dynamic behavior, however, is not implemented as the
switching between status. but by method calls on the objects in the object diagram, such as
those in Figure 10.

www.manaraa.com

146 Software Engineering for Manufacturing Systems

descriptive IMthod.

ve<bal J grap/lic:aJ De",~tion

ctass calagones
~bYe methods acc. to G Booch

~~
~l ~ ll!t Objekt·

tll! .., clagrams .g ill
I

Na ...
Shneodermarl-

Diagrems

SOUrce code

Figure 7 Descriptive methods used

I

Soltwar. developmen!
phlH'

Requi"''''''''1S
analySe

Modul design

Coding I
MOOull8SI

Use

lupport by
CASE loot.

Figure 9 and Figure 10 show examples of the use of a software tool for the descriptive
method according to Booch. In Figure 9, the master control functions of a master control
system are shown in class categories. The classes of the DNC class category are shown in
Figure 10. The representation of a run for transferring an NC program to a machining center
can be see in Figure II.

Ctas. Machining Center

CIU,spoc{lCaloan
AttfIOUtes:

S .. IYS
NC-Convol

Methods:
locO
ltansmlC Clata

Class diagram of the
class category ONC

NasSl·
Shneiderman
Diagram

Figure 8 Engineering decomposition and application of descriptive methods for
representing a machining center

www.manaraa.com

Function-oriented and object-oriented master control software 147

Do • -

I~------------~
Figure 9 Class categories in a master control system

(t:JI' ".. '........ . , .- 'oW.

... ~-.--- / OJ

<- \>
_ •• ~_ •.•• • rI

I~--------------~
Figure 10 Example of a class diagram for DNC master control function

www.manaraa.com

148 Software Engineering for Manufacturing Systems

Figure 11 Object diagram for the execution of the transfer of an NC program

A standardized platform such as a platform based on the CORBA standard (Common
Object Request Broker Architecture) or the OSACA platform (Open System Architecture for
Controls within Automation Systems) should ultimately be used as the development platform.
A development platform based on the CORBA standard has the advantage that it supports an
object-orientation with objects, classes, inheritance, aggregation and association relationships
across computers. An OSACA platform enables interoperability with objects at the machine
control level.

4 IMPLEMENTATION EXAMPLE AND COMPARISON WITH
FUNCTIONAL MASTER CONTROL SYSTEMS

The application of the software techniques discussed in this paper took place at ISW in the
framework of prototype work on the decentralized structured, object-oriented production
master control system for manufacturing applications (DOCMA). The CASE tool ROSE
developed by Rational was used for modeling the master control software. The DSOM
(Distributed System Object Model) platform developed by IDM based on the CORBA
standard was used as the development platform. Figure 12 shows an implementation example.

www.manaraa.com

Function-oriented and object-oriented master control software 149

~
o
•

obJect

DSOM·Windows
prozess

DSOM·AIX·
Unix prozess

DSOM ,. dislributed sySletn
object model

ISW network
(TCP/IP)

Figure 12 Implementation example

operating
computer

machine tool

Table I shows a comparison of the decentralized object-oriented master control system
DOCMA with the adaptable master control system ALSYS. ALSYS is a master control
system of the 4th generation and was also developed at the institute. The comparison is for the
DNC master control function for an FPS with 2 different machines and I transport device. It
addresses the software techniques used and the reusability of master control software.

Criteria ALSYS DOCMA

Number of the phase transitions Requirement analysis to Requirement analysis to
with a change of the descriptive system analysis, system system analysis, system
method analysis to system design to coding

design, system design to
coding

Descriptive methods in
system analysis: Structured Analysis, Descriptive method acc.

Entity Relationship to G. Booch, Nassi-
System design: Structured Design, Shneiderman diagrams

Structograms
Coding: C C++

www.manaraa.com

150 Software Engineering for Manufacturing Systems

Reusability of master control Function modules Classes, inheritance
software

Reusability of master control Configuration data, Classes, inheritance,
software by parametrization, editable parametrization

sequence rules, etc.

Extension of master control New function modules, New classes,
software by master control extension of function inheritance
functions modules

Extension of the master control Extension of existing New classes,
software by FPS components function modules inheritance

Archiving Versions of function Class library
modules various FPS
applications

average number of function approx. 3 - 5 approx. 14 - 18 \ 10 - 12
modules I classes \ objects of
ONC

average reusability of function approx. 0 - 5 approx. 10 - 18
modules I classes ofONC
within new applications

average number of source code approx. 14000- 55 000 approx. 100 - 2000
lines per function module I class

Table 1 Comparison of software technology and reusability for master control systems of
the 4th and 5th generation

The key observations from the use of object-oriented software techniques in OOCMA also
compared to functional software techniques in ALSYS can be comprised in the following
points:
• The master control system is developed using a consistent software model and descriptive

form. The software module does not need to be transformed during the transition from
system analysis to system design.

• The creation of a library with classes for master control system applications is achievable.
Object-orientation (abstract data types, inheritance mechanisms, aggregation etc.) offers an
appropriate mechanism for this. However the consistent use of the descriptive methods is
necessary in order to produce detailed documentation. Aids for managing the increasing
number of similar classes must also be provided (e.g. good search mechanisms).

• Software changes to facilitate reuse of function modules for new applications cannot be
avoided. Despite a high adaptability in functional master control systems, function modules
are not universal. An object-oriented master control system on the other hand achieves a

www.manaraa.com

Function-oriented and object-oriented master control software 151

high reusability due to a high number of classes with lesser functionality which can be
easily exchanged .

• The descriptive methods in all phases must be based on the same object-oriented model
(same mechanisms, e.g. inheritance, etc.) otherwise a transformation of the software model
is necessary. This relates in particular to the transition from module design to coding.
Examples of such transformations arise when we use

C instead of C++ (inheritance mechanisms have to be reproduced exactly),
a platform with interprocess communication instead of a platform with distributed
object-oriented communication (object communication has to be represented via
interprocess communication) or
a relational database instead of an object-oriented database (data and methods have to be
separated for persistent storage in the application).

5 SUMMARY

This paper has given an insight into the use of object-oriented software techniques and
systematic design in the development of a 5th generation master control system. It has shown
how a reusable class library can be created for decentralized object-oriented master control
systems and how application-specific master control system can be generated from the class
library. The advantages of "designing" an application-specific master control systems with an
interdisciplinary, physical view of the master control system have become clear. A
comparison with functional master control systems was made and a simpler and higher
reusability of classes compared to function modules was observed.

For the development of decentralized, object-oriented master control systems, consistent
support by CASE tools is not yet available. Development work is particularly needed in the
setting-up phase. This concerns the development of test environments with whose help the
production system to be controlled is reproduced and simulated in order to check the
operability of a master control system.

6 REFERENCES

Adiga, S. (\993) (Ed.) Object oriented Software for Manufacturing Systems. London etc.:
Chapman & Hall

Booch, G. (1991) Object-oriented Design with Applications. Redwood City:
Benjamin/Cummings

Brantner, K. (1993) Adaptierbares Leitsteuerungssystem flir flexible Produktionssysteme.
Dissertation Universitat Stuttgart (ISW 96). Berlin, Heidelberg, New York: Springer

Driller, J. (1995) Modellierung verteilter Steuerungs- und Informationssysteme in der
Produktionstechnik. In: Graduiertenkolleg Parallele und Verteilte Systeme.
Zusammenfassender Bericht 1993-/994, Stuttgart

Driller, J. (1995) F6derative Steuerungssysteme in der Produktionstechnik. 3. Berichts­
kolloquium des GK PVS, Stuttgart

www.manaraa.com

152 Software Engineering for Manufacturing Systems

Nof, S.Y. (1994) Critiquing the potential of object orientation in manufacturing. Int. Journal
of Integrated Manufacturing, Vol. 7, No.1, 3-16

Pritschow, G.; Storr, A; Handel, D.; Rommel, B.; Uhl, J. (1995) Uniform Object-Oriented
Machining Model as Basis for Decentralized Planning in Master Control Systems. In:
Annals of the German Academic Society for Production Engineering

Siewert, U.; Reichenbacher, J.; Uhl, J. (1994) Softwarewerkzeuge flir die Steuerungstechnik.
In: Fertigungstechnisches Kolloquium (FTK) '94. Berlin, Heidelberg, New York:
Springer

Siewert, U. (1994) Systematische Erstellung adaptierbarer Leitsteuerungssoftware am Beispiel
der Durchsetzungsplanung. Dissertation Universitat Stuttgart (ISW 100). Berlin,
Heidelberg, New York: Springer

Storr, A; Uhl, J. (1995) Objektorientierte Leittechnik: neue Perspektiven und l..Osungen. CIM­
Management, 11, 30 - 34.

Storr, A; Reibetanz, T.; Uhl, J. (1995) Strukturierung von Zellenleit- und NC-Pro­
grammierfunktionen als Beitrag zu offenen Steuerungsystemen. In: Offene Steuerungen,
Miinchen, Wien: Hanser

Uhl, J. (1995) Leittechnik von morgen - Was bringt die Zukunft? In: EfJiziente, prozejJnahe
Fertigungssteuerung und Uberwachung. ISW-Eigenverlag

Uhl, J. (to be published) Beitrag zur Entwurfssystematik eines dezentral strukturierten,
objektorientierten Leitsystems am Beispiel der DNC und Auftragsdurchsetzung.
Dissertation Universitat Stuttgart

Veeramani, D.; Bhargava, B.; Barash, M.M. (1993) Information system architecture for
heterarchical control of large FMSs. Computer Integrated Manufacturing Systems, Vol.
6, No.2, 76-92

7 BIOGRAPHY

Joachim Uhl holds a master's degree in mechanical engineering. Since 1990, he has been
working as research assistant at the Institute of control technology (ISW) at the University of
Stuttgart and is head of the group 'production control systems and quality assurance'. His
main research interests are the application of object-oriented techniques in manufacturing, the
development of decentralized control systems and the development of open system
architectures for cell controls.

Jiirgen Driller holds a master's degree in computer science. Since 1993, he has been working
as a research assistant at the Institute of control technology (ISW) at the University of
Stuttgart. He is also a member of the Graduiertenkolleg 'Parallel and Distributed systems'.
His main research interests are the application of object-oriented techniques in manufacturing
and the development of decentralized control systems.

www.manaraa.com

13

A Reusable Software Artifact Library
system as the core of a reuse-oriented
software enterprise

G. Jacucci*, E. MambeUat , G. Succi*, C. Uhrik*, M. Ronchetti*,

A. Lo Surdot, S. Doublaitt, A. Valerio*

* Laboratorio di Ingegneria Informatica, DISA, Universita di Trento,
via F. Zeni 8, 1-38068 Rovereto, Italia,
tel. +39-464-443140,fax +39-464-443141

t Sodalia S.p.A., via Brennero 364, /-38100 Trento, Italia
tel. +39-461-316111,Jax +39-461-316663

* Faculty oJthe Dept. oJ Technology Programs, University oJPhoenix
7800 E. Dorado Pl. , Englewood, CO

E-mail: gianni@lii.unitn.it

Abstract
Introducing software reuse at a corporate level represents one of the most promising means of
addressing the rising costs that are plaguing the software industry. A series of mechanisms are
needed for shortening development cycles and providing reliable software of high quality
which will be more maintainable and flexible for future extensions. This paper describes the
experiences of SodaIia S.p.A., a young Italian company, in implementing such reuse methodol­
ogy, particularly centred around a reuse tool specifically developed.
Since 1993, Sodalia's software engineers have been implementing a reuse program whose goal
is making software reuse a significant and systematic part of the software process. The SodaIia
Corporate Reuse Program is intended to institutionalize a software reuse process that incorpo­
rates reuse-specific activities all along the SodaIia object oriented software development proc­
ess, drawing heavily on a reusable software artifact library system which has been designed to
support the classification, management and search for artifacts to be employed in reuse efforts.

This paper presents an overview of the corporate reuse program implemented at Sodalia,
focusing on the reusable software artifact library system and its role inside the reuse program.

www.manaraa.com

154 Software Engineering for Manufacturing Systems

Keywords
Software reuse, reusable software artifact library, reuse support organization

1 INTRODUCTION

Sodalia S.p.A. is a young Italian company that arose from a joint-venture between the STET
Group (Italy) and Bell Atlantic Corporation (USA). The objective of Sodalia is the develop­
ment of innovative telecommunications software products for the management and mainte­
nance of telecommunication networks. The company's goal is to develop high quality, low­
cost software and, more generally, methodologies which are able to deal with the even more
complex and broad needs of the telecommunication sector, exploiting innovative development
methods and technologies.

Due to the increasing competition and rapid technological innovations that in the past few
years mark the field of telecommunications, this sector has undergone radical changes, forcing
operators to cope with a growing demand of new applications and services, in terms of quality,
variety, reliability, and, last but not least, low prices.
In this situation the traditional custom software development methodologies show all its inade­
quateness and ineffectiveness: to become really competitive in the telecommunication sector
and able to survive in a global market, an organization needs to adopt leading edge technolo­
gies inside a defined, well planned and specific software development process. Moreover, tra­
ditional software development methodologies do not allow an efficient maintenance of the
products, while any modification or extension of these products often results in a full re-devel­
opment of them.
A new iterative development philosophy based on software reuse and using the emerging
object oriented technologies seems to be the right trade-off among the opposing factors charac­
terizing a successful telecommunication product or service: high-quality, low-cost, reduced
time-to-market, flexibility and maintainability, just to name some. Software reuse is particu­
larly interesting for Sodalia, since it develops similar applications for its parent companies and
a new software system can be built reusing previously developed components.
Since 1993, Sodalia's Software Engineers have been studying a systematic reuse program to
support and to integrate the software development activities, incorporating a reuse library to
support the classification and management of the heterogeneous reusable components.
The next section of this paper deals with Sodalia's Corporate Reuse Program, while section 3
describes in detail the Reusable Software Artifact Library, highlighting its architecture and
main functionality. Section 4 presents some experiences gained in the use of this reuse method­
ology inside Sodalia. In the last section some conclusions are outlined and future work is
sketched.

2 SODALIA'S CORPORATE REUSE PROGRAM

The Sodalia reuse program aims at making software reuse a significant and systematic part of
its iterative software development process. Due to the critical role played by reuse in achieving
Sodalia's business objectives, and the novelty of the reuse technology, the reuse program will

www.manaraa.com

A reusable software artifact library system 155

be monitored and updated as the reuse experience grows, iteration after iteration.
The reuse program aims to develop a Software Reuse Process that incorporates reuse-specific
activities within the Object-Oriented Software Development Process, and a reuse library to
support the classification and management of reusable components. The strategy adopted to
support systematic reuse within and across iterations and projects, organizes activities around
the following two views: Software Process for Reuse and Software Process with Reuse,
supported by a Reusable Software Artifact Library (RSAL).

A Metrics Definition Program has been set up with the goal of defining metrics for both soft­
ware and reuse processes (SSPG I 994b). The first objective of the program is the definition of
size and complexity metrics for measuring source code quality. Then, the metrics model will
be extended to cover the analysis and design phases. Finally, a predictive metrics model will be
conceived. The following sections expose the details of the corporate reuse program.

The concept of reuse for Sodalia
Beyond the apparent obviousness of the concepts and objectives of reuse, several competing
reuse approaches differ in at least one aspect: the artifacts they intend to reuse (e.g., the reuse
of software, or of all life-cycle work-products). The following definition has been adopted to
capture the essence of the Sodalia reuse approach:

Software Reuse is the set of planned and systematic activities aimed at maximizing
the use of existing software artifacts and known processes in the production and
maintenance of new software artifacts.

Thus, Sodalia's reuse activity considers every kind of artifact, although more importance is
given to high-level artifacts of the software life-cycle (e.g., requirements), since they hold the
maximum information (see (Kain 1994), (Capers 1994), (Prieto-Diaz 1993)).

A Reuse-centered Software Development Process
Sodalia's Software Engineering departments have defined and applied a reuse-centered soft­
ware development process that fully supports software reuse and exploits the benefits of
object-oriented analysis, design, and programming.
SIMEP (Sodalia's Integrated Management and Engineering Process (SSPG 1994a)) provides
an advanced process architecture, modelling a highly iterative process as well as rapid proto­
typing. The iterative process model provides a rigorous framework for progression in the
project by re-iterating a sequence of basic process steps. Moreover, the process architecture
identifies reuse-specific activities (e.g., Problem Domain Analysis, Generalization of Require­
ments, etc.) as well as reuse-affected activities (e.g., coding) to foster reuse at all stages of the
production process. The reuse-specific activities are described in the Sodalia's Software Reuse
Guidelines (SSRG), (SSPG 1994c).

The SSRG "supports" SIMEP (reuse in-the-process) to provide guidance for proper conduct of
a set of planned and systematic activities carefully defined and positioned along the develop­
ment process to:

• Develop with reuse: maximize the reuse of already existing software components and arti­
facts;

• Develop for reuse: produce software with the highest reuse potential.

The SSRG "complements" SIMEP (reuse in-the-factory) to provide guidance for all those

www.manaraa.com

156 Software Engineering for Manufacturing Systems

activities, across and beyond projects, required to establish, maintain, and populate the RSAL,
by producing specific components out of the projects. Moreover, the purpose of the guidelines
for the activities of reuse in-the-factory, is to maximize the matching of reuse opportunity with
reuse potential, through specific rules and recommendations to populate, search, extract, and
maintain the reuse library.

Software process for reuse
Software process for reuse includes the set of activities that allow, during the course of a
project, the early identification of artifacts to be developed that might exhibit a high reuse
potential either within or in other iterations of projects. Besides, added costs and time (incurred
for reuse addressed specific activities) estimation techniques will be defined.
Sodalia pursues both vertical reuse (i.e., the reuse of software artifacts within a specific
domain or application area) and horizontal reuse (i.e., the reuse of software artifacts across
domains or application area). However, it puts major emphasis on the latter, since horizontal
reuse provides the highest payoff.
Architecturally, Sodalia's products are viewed as a hierarchy of a number of product layers,
each playing a well defined technical and market role. This architecture is defined by the Stra­
tegic Product Architecture (SPA) (SSPG 1993), whose goal is to set the strategic direction for
structuring Sodalia's software products to support reuse activities. The SPA is organized in
four layers:
• Operating Environment (layer 1): it addresses the technological foundation of the software

products. The architectural components of this layer reflect the selection of basic database,
graphics, and communications enabling technologies for the Operating Environment.

• Application SheD (layer 2): it characterizes software components specifically designed to
solve application problems for a broad telecommunication market (e.g., Billing, Service Pro­
visioning, Customer Network Management, etc.). This layer is likely to contain a large
number of reusable software components.

• Market Segment Specific (layer 3): it reflects the specificity of a market segment related to a
specific problem-domain (e.g., the Service Provisioning Application can be customized for
small PTfs, large end-users, and mobile telephony market segments).

• Customer Specific (layer 4): it represents those software components which are highly spe­
cialized to address application features specific to a particular customer. Components at this
layer have typically a low reuse potential.

The main architectural principle employed in SPA is relentlessly separating generic functions
(i.e., that might exhibit a high reuse potential) from those which are specific to problem
domains, market segments, and individual customers. The higher in the SPA a component is
categorized, the less likely that component is to be reused. This concept is particularly true for
horizontal reuse. However, within the same application domain (vertical reuse), components at
all layers are equally highly reusable.
In application of the SPA, requirements for the components to be developed (at any level in the
SPA) are examined to determine their reuse potential. The examination may recommend a
"generalization" of a requirement to increase reuse potential. Since generalization should com­
ply with market needs, it should be driven by stability and/or evolution analysis of the user
requirements related to the market segment involved, as determined by the related· business

www.manaraa.com

A reusable software artifact library system 157

plan. This critical activity is driven by the Problem Domain Analysis. The lower the level of
the component, the more general is the analysis. On the contrary, the higher the level of the
component, the more Customer-Specific or Market Segment-oriented is the analysis.

Software process with reuse
Software process with reuse includes the set of activities that aims at maximizing reuse of
existing components classified into the RSAL.
The approach supports the earliest possible identification (at requirements or design stages) of
candidate reusable components since reuse is most effective when applied at early stages of the
life-cycle. The principle, well practiced by hardware engineers, is to specify and design aiming
at reusing existing components. The earlier these components are identified, the greater is the
possibility to tailor requirements and design to reuse those components, rather than developing
new ones. Since the definition of reuse is based on applying existing solutions to new prob­
lems, one can succeed in identifying something to reuse only if:
• The domain of available solutions is complete with respect to new, emerging problems;
• The description of both the problem and the solution are expressed at similar levels of granu­

larity, for assessing their match.

If either one of these basic conditions is violated, it is practically certain that a new solution
will be developed even for an old problem. Thus, the issue of anticipating the identification of
reusable solutions depends on how early in the life-cycle one can satisfy the above necessary
conditions. As a result, the reusable asset library can only be populated by artifacts certified
according to the above conditions.
The identification of candidate reusable components must take place at each iteration (SSPG
1994a), moving top-down from large-grain artifacts (e.g., sub-systems) to fine-grain artifacts
(e.g., classes), thus supporting the "reuse in the large" and "reuse in the small" paradigms.
Reuse "as-is" (i.e., without any alteration) and reuse "with change" (Le., requesting prior mod­
ification/generalization/composition) have also been considered. Our strategy focuses on max­
imizing reuse as-is rather than reuse with change, because it maximizes productivity, relies on
a certified quality, and minimizes (by factorizing) maintenance costs. Nevertheless, reuse with
change should be considered when it is the only viable alternative. The latter implies the
reprocessing of intermediate life-cycle artifacts of the component (specifications, design, test,
etc.) before being able to reuse it. The cost of developing reusable components can be amor­
tized only if the components are used repetitively with no or minimal changes.

3 REUSABLE SOFTWARE ARTIFACT LIBRARY

RSAL is a system for organizing rationally artifacts of a heterogeneous environment targeted
to software production. The RSAL system supports the classification and search of various
artifacts associated with a family of software development projects. By artifact, we mean any­
thing with a self standing identity that can be found in the software life cycle: reports, user
expectations, requirements, cost models, algorithms, programs are non exhaustive examples of
artifacts. An artifact can be defined as the final result of an activity, including documents (e.g.,
High Level Architecture, User Manual) as well as software products (e.g., sub-systems,

www.manaraa.com

158 Software Engineering for Manufacturing Systems

classes).
A heterogeneous environment targeted to software production is by its own nature distributed
in time and space, multi-systems and heterogeneous in terms of the machines and the operating
systems working on it.
RSAL does not manipulate artifacts, but rather information on artifacts which are stored in
software repositories, either local (i.e., owned by Sodalia) or remote (i.e., owned by Sodalia
Parent Companies or others). Each artifact is described in RSAL by means of an artifact
descriptor, whose two-fold purpose is to uniquely identify (locate) the artifact and to maintain
a public description.
Artifacts have intrinsic attributes which pertain to their ontology, since they define their
essence, e.g. the last opening date, the owner, the name, the i-node number are all intrinsic
attributes of a Unix file. Artifacts have external attributes as well, which are annotations refer­
ring to artifacts and used in classifying and retrieving them: the quality level of a product, a
description of the behaviour of a piece of code, a local comment on a remote file are all exam­
ples of annotations. RSAL handles both intrinsic attributes of its artifacts and external
attributes. Moreover it allows to add further annotations to an artifact so as to make classifica­
tion and search easier.
In RSAL there is a set of predefined attributes, i.e. attributes that are defined for any artifact.
The set of such attributes includes the author, the creation date, the size and so on. Predefined
attributes can be both intrinsic attributes, such as the creation date, and external attributes, such
as the author: in such case whenever a reference to an artifact is inserted in RSAL such
attributes must be filled and it is up to RSAL to keep them properly updated.
Attributes that are not predefined are called added.
Usual artifact descriptors such as faces, keywords, free text descriptions are regarded as
attributes of an artifact.
Artifacts are connected by relations. A relation can be any kind of association that can be
drawn between two artifacts such as one being the requirement of the other or one being the
next version of the other and so on. Clearly, the definition of what is an artifact and what is a
relation is not sharp: relations can rise to the level of artifacts when they have a self standing
relevance, e.g. a baseline is a relation among several modules of code identifying a working
product, therefore it is also a well defined artifact. Simplifying, RSAL may be thought as the
catalogue of a library (a collection of cards describing in detail each book available in the
library), and the artifact repository as the library itself. Before looking for a book in the library
shelves, it is advisable to consult the catalogue. This is the principle adopted by RSAL. Each
descriptor gives an exhaustive set of information for enabling the user in deciding if the artifact
exhibits the characteristics he is looking for. The retrieval sub-system provides the user with
powerful facilities for browsing the descriptor repository. Once the user has located the desired
artifact descriptor, access to the artifact itself is provided by means of the tool used to create it
or an equivalent one (supported tools).

3.1 RSAL architecture

RSAL offers an environment in which several users, working at their own workstations in dif­
ferent contexts, share the same pool of information. RSAL users see it as a central library
whose retrieval facilities provide support in finding matches for all kinds of reusable artifacts

www.manaraa.com

A reusable software artifact library system 159

stored in the Sodalia's software repository.
RSAL organizes artifacts of several kinds under a uniform view. To do that, it manages refer­
ences or pointers to artifacts, rather than the artifacts themselves. Attributes and relations are
the primary parts of an artifact reference. RSAL stores the references to the artifacts in a meta­
data repository called the descriptors repository. This repository is directly accessed by the
main modules of the system in order to archive, search, remove, change or retrieve an artifact
descriptor. A Classification module is in charge of organizing the information about artifacts in
a way that allows an efficient retrieval. An Identification module acts as a search engine on the
descriptors repository, identifying the artifacts which satisfy given properties. This module is
coupled and integrated with an interpreter handling SSQL queries -the SSQL module. RSAL
produces some statistics on accesses to artifacts, and embeds an Announcement mechanism to
inform end-users about new artifact acquisitions, new artifact versions, discovered bugs, etc.
RSAL also performs application management functions to add users, set user privileges by cat­
egory, and configure system parameters (e.g., keywords list). These last two functionalities are
supported by the Application module.
A Tool Integration Platform underlying the whole system allows the interfacing with end-users
and with application administrators, together with external tools, such as document tools or
object oriented analysis and design tools.
Putting together these considerations, the RSAL high level architecture can be displayed as
shown in figure I.

descriptors
repo itory

Figure I: The RSAL general architecture.

www.manaraa.com

160 Software Engineering for Manufacturing Systems

3.2 Classification and retrieval

Classification of an artifact when it is inserted in RSAL allows the organization of all the
attributes of the artifacts controlled by RSAL so that they can be efficiently and effectively
identified and retrieved by the system. Effective reuse of existing artifacts requires a sophisti­
cated classification/retrieval method. In the early stages of the reuse program, simple classifi­
cation/retrieval methods are appropriate. However, more sophisticated ones are needed as the
reuse library grows. Moreover, no single classification method is sufficient to find all relevant
components of a given search (Frakes 1 993b). Therefore, we consider multiple classification
schemes, as explained below.

Classification of an artifact
The three classification methodologies implemented in RSAL are different in the way the arti­
facts are classified and retrieved. When a new artifact is inserted, it has to be classified in all of
the methodologies supported by the system. In fact, if this is not done, the artifact will not to be
found when a search based on the missing methodology is performed.
For the free text classification, the artifacts are classified associating them with a text-descrip­
tion of arbitrary length which describes the artifacts themselves. For instance, a paper can be
classified using its abstract.
In the keywords classification each artifact in the system is associated with a set of keywords
that characterize the artifact itself and are chosen from a well defined dictionary. The diction­
ary can be expanded by the system administrator, who has the capability to remove unused
keywords. For instance a class that implements a stack of integers could be classified using the
keywords: integer, LIFO, source, C++, Object Oriented.
The classification of the artifacts in the faceted methodology is very similar to the keywords
classification (Prieto 1989), (Sorumgard 1992). In fact, a set of keywords has to be associated
each artifact in this case. The difference from the keywords classification is the dictionary from
which the keywords are chosen: the dictionary is not plain, but structured into multiple facets
that contain distinct subsets of keywords regarding different views of the artifacts. The single
facets are structured as well. The keywords are stored in a weighted tree which represents their
dependencies in terms of abstraction and specificity. The only user who can modify the facets
is the system administrator. He can add or remove keywords, or move them to new locations in
the trees; the system administrator can modify the weights in the trees, too, or even add or
remove some facet. For instance if there are the facets Abstraction, Operates on and Depend­
encies, a stack of integers can be classified with the keyword Stack for the facet Abstraction,
Integer for Operates on, and C++ for Dependencies.

Retrieval of an artifact
An artifact stored in RSAL can be retrieved by navigating through the relations established
between the artifacts or performing a search based upon one of the classification methodolo­
gies implemented in the system. The search is fundamental even when navigating through the
relations - in fact, it is necessary to find an initial artifact from which to start the navigation.
The search is done in different ways depending on the classification it uses: the user has to do a
query in a format which depends on the different kinds of classification. If the results of the
search are not satisfactory, the query can be relaxed or modified in some way and the search

www.manaraa.com

A reusable software artifact library system 161

will be repeated with the new query. For the free text classification, the query consists of a
string that describes the characteristics of the artifacts sought, and the system returns all the
artifacts in which the textual description contains the search substring. The only way to relax
the query is to change the string to look for. To use the keywords classification, the query is
prformed by giving the system a set of implicitly ANDed. The system will return all the arti­
facts with all the keywords of the query present in their set of keywords. The query can be
relaxed by specifying less keywords or by changing them.

Using the faceted classification, the user has to specify an arbitrary number of keywords to
look for in each of the facets, and the artifacts at the minimum distance (calculated from the
structure of the facets) from the query are returned. The query can be relaxed by changing the
keywords to look for, or adding new ones. In fact, if mUltiple keywords are specified for a sin­
gle facet, this is intended as an OR between them and the minimum distance between them is
considered.

3.3 The RSAL query language

RSAL allows a user access to a metadata repository linked to one or more artifact repositories
via predefined menus and windows. This kind of access to the data is very powerful but suffers
a limitation: it is frozen and can not be changed to accomplish all the desired functions a user
can imagine. One would prefer to have a system which is fully programmable by the user so
that it can be configured to satisfy even very unusual problems. This can be performed using a
special language which permits interacting directly with data in the repository to perform effi­
cient searches.
RSAL introduces a flexible query language called Set-based Query Language (SSQL). The
aim of this language is to allow a user to program his own functions in order to interrogate the
repository. In particular, a repository is naturally viewed as a collection of (generally) homoge­
nous data. A language especially efficient for treating sets (Jayaraman 1987) is thus a natural
choice to begin constructing a specific query language. We based SSQL on a set-based lan­
guage called SL, which is derived from the Subset Equational Language (Jayaraman 1992),
(Jayaraman 1988). SL is very efficient in dealing with sets and it is quite simple to use. In order
to interface this language with the specific kind of data used by RSAL, we have expanded the
basic instructions of SL so as to allow direct query over metadata in the repository.
The extensions made to SL concern the management of the repository, introducing the notion
of metadata and its fields. It is possible to refer to a particular metadata field in order to analyse
all the object descriptions for a particular value. This has been achieved by introducing two
classes of operators: a set of specific operators and a general wide-range operator.
The specific operators deal with predefined attributes, both intrinsic and external, which
describe every artifact in the system. These specific operators follow the syntax:

Value = predefinedAttributeName(EntityName)

where Value is the value of the predefined attribute predefinedAttributeName for the artifact
EntityName. For each attribute present in the artifact descriptor, a specific operator is provided
to test the indicated metadata field. As an example for the private data of the artifact, we have
the operators: author, creationDate, type, location.

Also, a general wide-range operator is provided. The syntax of this operator is as follows:
Value = test(AttributeName,EntityName)

www.manaraa.com

162 Software Engineering for Manufacturing Systems

with the usual meaning for Value, EntityName, making it possible to refer to the given Attrib­
uteName in order to test its value.
Note that the possible inconsistency arising from, for example, referring to an attribute not
defined for the artifact indicated, is properly handled by RSAL. It returns an error code if the
attribute has been never defined in the metadata repository or if the bottom value of the domain
of all possible values if the considered artifact has not defined a value for it.
Implementing a search with a SSQL program is very straight-forward. For instance in order to
retrieve all the artifact created by the user John before 31 May 1994, the program clause should
be:

searchedEntities(Author) = {X : X in RSAL; author(X) == Author,
early(creationDate(X), (31 ,may,1994)}.

and the query should be:
searchedEntities(, John ').

Ending this paragraph, the following clause retrieves the author, the type and how many copies
are present in the repository of all the entities that have the title specified in the head of the
query:

searchTitleCTitle) = {[Author, Type, Copies] : Artifact in RSAL;
title(Artifact) == Title; Author is author(Artifact),

Type is type(Artifact), Copies is test(Artifact, 'copies')}.

4 REUSE EXPERIENCES

Designing and constructing reusable components requires additional effort estimated from 5 to
10 times the effort required to build non-reusable software components (Meyer 1994). There is
a definitive need for an organization that supports and fosters reuse activities, since project
teams cannot be relied on to achieve significant reuse: developers are necessarily focused on
their particular applications and are constrained in terms of time, costs, and resources. Thus,
project teams will not want to spend additional time developing software that does not directly
affect their own application (Caldiera 1991).

4.1 Reuse Support Organization

A Reuse Support Organization (RSO) is a group of software engineering experts (senior ana­
lysts, designers, and programmers with consolidated experience in object-oriented technology)
that provide support to project teams in the following way:

• Training and education: RSO defines and enacts the policies to disseminate the reuse culture
and to encourage the adoption of reuse practices among project teams. It is principally
through this mechanism that the organization learns how to "reuse" effectively.

• Provide expertise: whenever possible, RSO engineers work with the project teams to better
support them in achieving both development "for reuse" and "with reuse".

• Development of reusable components: dedicated teams are in charge of producing reusable
components by either re-engineering the "normal" software components or by developing
new components whose reuse potential has been assessed during domain analysis. The act of

www.manaraa.com

A reusable software artifact library system 163

developing reusable components asynchronously with project team activities is called an "a­
posteriori (or backroom)" approach .

• Maintenance of reusable components: reusable components may change as flaws are cor­
rected and enhancements are made .

• Maintenance and administration of RSAL: the central repository is managed by a single team
which controls the nature and quality of the information stored in the repository. This activity
also deals with the population of the library of artifact descriptors, including setting policies
for artifact acquisition and maintenance (e.g., evaluation, certification, classification, and
weeding). In addition it has to define and maintain a coherent classification scheme for the
stored artifacts, weeding old artifacts, announcing incoming ones, user management (e.g.,
add/delete users, set user privileges), and reporting on artifact usage.

Nowadays, the RSO provides both expertise and support to the project team activities, and
development and management of the reusable software components. Currently, development
for reuse activity performed by project teams is limited to the discovering for opportunities of
reusable components. This information is given to the RSO that adapts, by generalizing or
reengineering, the normal (not the reusable) artifacts. However, project teams perform devel­
opment with reuse activities looking for opportunities of reuse among already developed and
classified components. These activities are based on the RSAL tool and are supported by the
RSO.

5 CONCLUSIONS

Many organizations, commercial, academic, and governmental, are devoting resources to soft­
ware reuse, although software reuse is not yet a major force in most corporate software devel­
opment programs (Frakes 1993a). Successful reuse introduction into industrial organizations
has demonstrated that reuse benefits, such as improved productivity and reduced time-to-mar­
ket, are really accessible and lead directly to lower cost, higher quality software.
The Reusable Software Artifacts Library RSAL has shown the great importance of a reusable
repository approach to leverage the efficiency and payoff of a corporate reuse program, espe­
cially in an environment where heterogeneous, complex and strictly correlated artifacts are
potential candidates for reuse. RSAL plays a critical role in the introduction of a formal and
systematic reuse program within Sodalia, allowing reuse and support information to be shared
inside the organization. Its scope embraces both vertical and horizontal reuse.
Presently, it is relatively easy to expand the built-in functionalities of the system (e.g., to
expand recognized artifact types and their associated tools), but this in itself could be made
more automatic in the future, thereby quickly augmenting the rate of expansion of the system
and the number of interested users. In addition, the system maintenance features should
evolve. For instance, there should be a natural way of testing consistency if changes have been

made to a remote system, and a way of notifying a remote administrator when such an incon­
sistency is detected. As well, many other event triggered notifications and actions are easily
imagined. Finally, some feature for learning and automatic performance improvement are
envisioned, perhaps being able to better guess what ultimate artifact a user is seeking based on
his or her present search or browse actions and records of the outcomes of all similar such
search or browse actions from past users.

www.manaraa.com

164 Software Engineering for Manufacturing Systems

A large-scale experimentation of RSAL has been set-up in the fonn of a project sponsored by
the European Community under the ESPRIT program (project TARSAL #20555). This trial
application aims to verify the use of RSAL in three different software companies with different
reuse maturity, different software engineering culture, different application domains, different
operating systems and different size.

6 REFERENCES

Caldiera, G. Basili, V. 1991 Identifying and Qualifying Reusable Software Components, IEEE
Computer, February 1991.

Capers, J. (1994) Economics of Software Reuse, Computer, Vol. 27, #7.
Frakes, W. B. (1993a) Software Reuse Survey Report. Software Engineering Guild.

Frakes, W. B. (1993b) RSL System Concept Definition, Software Engineering Guild.

Jayaraman, B. and Plaisted, D. A. (1987) Functional Programming with Sets, Third Interna-
tional Conference on Functional Programming Languages and Computer Architecture,
Portland, 194-210.

Jayaraman, B. (1988) Subset-logic Programming: Application and Implementation, 5th Inter­
national Logic Programming Conference, Seattle, 843-858.

Jayaraman, B. (1992) Implementation of Subset Equational Erograms, Journal of Logic Pro­
gramming, volume 13, number 3, 299-324.

Kain, J. Bradford (1994) Pragmatics of reuse in the enterprise, Object Magazine, 3(6), pp. 55-
58.

Meyer, B. (1994) Library Design, Tutorial Notes, Tools Europe 1994, Versailles (France).

Prieto-Diaz, R. (1989) Classification of Reusable Modules, Software Reusability, Volume 1,
Concepts and Models, T. J. Biggerstaff and A. J. Perlis publisher, ACM Press

Prieto-Diaz, R. (1993) Status Report: Software Reusability, IEEE Software, Vol. 11, #3.

Sorumgard, L. S. and Tryggeseth' E. (1992) Classification, Search and Retrieval of Reusable
Software Components, Division of Computer Systems and Telematics, Norwegian Insti-
tute of Technology.

SSPG (1993) Sodalia Software Process Group, Strategic Product Architecture (SPA), Internal
Document, Sodalia Software Development Infrastructure.

SSPG (1994a) Sodalia Software Process Group, SIMEP: Sodalia's Integrated Management
and Engineering Process, Re1.3, Ver.1, Sodalia Software Development Infrastructure.

SSPG (1994b) Sodalia Software Process Group, SIMEP Software Metrics Model, ReI. 1 , Ver.1,
Sodalia Software Development Infrastructure.

SSPG (1994c) Sodalia Software Process Group, Sodalia's Software Reuse Guidelines, Rel.3,
Ver.l, Sodalia Software Development Infrastructure.

www.manaraa.com

A reusable software artifact library system 165

7 BIOGRAPHY

Gianni Jacucci
He was born in Rome in 1943.

He received the Laurea in Physics (cum laude) from the University of Rome in 1967.

He had a research fellowship of the Ministery of Education (1968-1971) and was a researcher
of the Italian C.N.R. from 1971 to 1986.

He is a professor of computational physics at the Faculty of Engineering of the University of
Trento Professor of computer science at the University of Trento, an adjunct professor of phys­
ics and supercomputing applications at the University of Illinois at Urbana-Champaign, a visit­
ing professor at Computer Science Department, Cornell University, and at Computer Science
Department and National Center for Supercomputing Applications, University of Illinois at
Urbana-Champaign.

He has many scientific publications.

Eliseo Mambella
He was born in 1931.

He received the university degree in Sociology (cum laude) from the University of Rome.

He was employee of SIP (now Telecom Italia) from 1953 to 1991.

He is author of the Business Plan for the constitution of Telesoft and consultant for the manag­
ing of Telesoft from 1992 to 1993. He is a reviewer of the EUROWARE ESPRIT project.
He is the director of the Department of Research and Technologies of Sodalia S.p.A. since
1993.
His working interests focus on software engineering and include software reuse, reengineer­
ing, software process.

Giancarlo Succi
He was born in Vercelli (I) in 1964.

He received the Laurea in Ingegneria Elettronica (cum Laude) in 1988 and the Ph.D. in 1993,
both from the University of Genova, a M.S. in Computer science from State University of New
york at Buffalo in 1991.

He is a researcher at the University of Trento since 1993.

He organized two post-conference workshops at the "International Conference on Logic Pro­
gramming 1993" in Budapest, Hungary and at the "Joint International Conference and Sympo­
sium on Logic Programming 1992" in Washington, DC.

He is author of several scientific publications.
His principal interests are software engineering and declarative languages.

Carl Uhrik
He was born in Cedar Rapids, Iowa (USA) in 1957.

He received a Bachelor of Sciences (Electronic) (B.Sc.) from University of Texas A&M, Col­
lege station, USA in 1980, a Bachelor of Computer Sciences (B.Sc.) from University of Texas
A&M, College station, USA in 1981, a Master of Sciences (M.Sc.) from University of Illinois,
Champaign-Urbana, USA in 1986 and a Ph.D. in Computer Science from University of Illi-

www.manaraa.com

166 Software Engineering for Manufacturing Systems

nois, Champaign-Urbana, USA in 1991.
Since 1990 he is a visiting researcher at University of Trento, Italy.
He was a visiting researcher at Computer Science Department and National Center for Super­
computing Applications, University of Illinois at Urbana-Champaign, USA, at National Center
for Supercomputing Applications, Cornell University, USA.
He is author of many scientific publications.

Marco Ronchetti
He was born in Bolzano (I) in 1955.
He received the Laurea in Physics from the University of Trento in 1979.
He attended a Post-Doc at IBM-TJ.Watson Research from 1980 to 1981.
He is a researcher at the university of Trento since 1983.
He is author of 27 scientific publications.
He organized three workshops on scientific data graphic post-processing.
His recent interests are: simulation techniques in physics with supercomputers and worksta­
tions, distributed databases, image processing.

Angela Lo Surdo
She was born in Italy in 1953.
She received the Laurea in Mathematics from Rome University.
She worked for Italsiel S.p.A. (1978-1983) in development and maintenance of a TP monitor
of IBM CICS, for Selesta Sistemi (1983-1990) on definition and coordination of the develop­
ment and maintenance activities.
She was responsible for Configuration Management and System Administration from 1990 to
1991 and project leader in TCL domain area for Telesoft S.p.A. from 1991 to 1993.
Since 1994, she is responsible in Sodalia S.p.A. for Software Development and Project Man­
agement in the Research and Technology Department.

Stephane Doublait
He was born June 27,1963.
He received a Master of Sciences (M.Sc.) from Laval University, Quebec, Canada in 1990, a
Bachelor of Sciences (B.Sc.) from Laval University, Quebec, Canada in 1986.
He was Principal Software Engineer at Bell Atlantic from 1990 to 1993.
He is Engineering Manager at Sodalia S.p.A since 1993, responsible for implementing the cor­
porate reuse strategy of Sodalia.
He is author of more than 20 scientific publications in the area of artificial intelligence and
software reuse.
His working interests focus on software engineering (software reuse, re-engineering, software
process) and artificial intelligence (knowledge modelling & acquisition, automatic planning).

Andrea Valerio
He was born in Trento (I) in 1970.
He received the Laurea in Ingegneria Elettronica in 1995.

www.manaraa.com

A reusable software artifact library system

He is currently Ph.D. student at the University of Genova.
He is author of scientific publications.

167

His principal areas of interest are software engineering, especially software reuse, reuse met­
rics (both quality and productivity metrics) and declarative languages.

www.manaraa.com

14

Software design practice using two SCADA
software packages.

K.P. Basse ,G.K. Christensen and P.K. Frederiksen
Dept. of Control and Engineering Design
Technical University of Denmark
Building 421, DK-2800 Lyngby
Phone: +4545254504, Fax: +4542884024

Abstract
Typical software development for manufacturing control is done either by specialists with
considerable real-time programming experience or done by the adaptation of standard
software packages for manufacturing control. This paper covers the experiences from the
application of two software packages for §upervisory £ontrol And nata Acquisition for the
control of a chemical plant. The software packages are: "Fix" from Intellution and "InTouch"
from Wonderware. Emphasis is placed on the practical software design cycle and the typical
changes imposed on this by the application of the standard packages. It is argued that the
SCADA and the PLC software must be developed in relation to a common specification for
both applications although the development is done in two very different environments.
Comparison of the software packages in relation to the process control specifications and the
development effort is given.
Finally the application possibilities for these packages in relation to discrete parts
manufacturing are evaluated based on the internal structure of the packages and the structural
demands in this area.

Keywords
Supervisory control, standard SCADA software, software design.

1 INTRODUCTION

Ever since the introduction of the CIM-concept there has been a general consensus that the
computer integrated factory is the factory of the future (with a future !) . No matter what
specialised mode of operation we are considering there has been increased efforts to use
computers both for off-line planning and on-line production control. Inside the discrete parts
manufacturing area the scene has been dominated by special purpose controllers like CNC­
controllers, robot-controllers , more general process controllers PLC-controllers, etc. The
process industries have relied more heavily on general process controllers and PLC's. Both
areas face the challenge to integrate off-line planning with on-line production control. In

www.manaraa.com

Software design practice using two SCADA software packages 169

general this challenge is expressed in terms like optimised production scheduling, quality
control, product documentation and responsibility, CAD/CAM integration, etc .. In both areas
considerable integration has been demonstrated in terms of the functionality of the
implemented plants. The demonstrations have mainly been achieved by completely new plants
where one or two vendors have supplied everything from computer hardware and software to
production machines or PLC's. The computer integration of manufacturing in companies with
existing production facilities seems to go much slower due to the large investment in software
development involved. One of the reasons for this is the lack of industrially accepted
standards for the areas and the large amount of work involved in achieving commonly
accepted goals. These goals may be summarised as (Fix, 1994; InTouch, 1995; Mainstream,
1989):

* independence of hardware platform
* high level programming
* drivers to a large diversity of special hardware
* easy to set up graphical man/machine interface
* database access
* network capabilities
* transaction processing meeting real-time demands
* manufacturing specific support functions

On the software market there seem to be an increasing number of standard software packages
available for manufacturing control. Some of these are termed SCADA software. SCADA is
an abbreviation of : ~upervisory ~ontrol And !!ata Acquisition. They are aimed primarily at
various forms of process control and data acquisition tasks. Two successful packages that
seem to fulftl the above mentioned general requirements were selected for the control of a
typical chemical process plant. These were: Fix (Fix,1994) and InTouch (InTouch,
1995).The purpose was to test the packages in PC-versions against a specific set of process
control specifications and to study the software design methods and related programming
effort involved in the use of these packages.

2 THE SYSTEM SPECIFICATIONS

A simplified PI-diagram of the chemical chromatographic plant is shown in figure l.
Chromatography is a term used for a number of processes where different components of a
mixture are separated in a process column by passing various chemical substances from input
tanks through the column. The process does not demand real-time responses with reaction
times of less than 1 second. In this respect the PC based software packages seemed not to
present any problem. Nevertheless the PC is not used to directly control the plant. Because of
high demands for control security and related pharmaceutical validation, the process has been
controlled by a stand alone PLC .(SattControl,1995). The PLC contains the interrace hardware
for the process instrumentation and control valves. For the above mentioned reasons the
structure for the plant control with SCADA software became a single PClPLC configuration
as shown in figure 2.
Additionally there was a demand that the PLC should be able to control the process also in the
case where the PC might fail. This limits the SCADA software to the task of supervisory
control and data acquisition. A short description of the control system specification is given
below.

www.manaraa.com

170 Software Engineering for Manufacturing Systems

Input tanks Application tank
Chromatographic column

Airtrap

Waste

Figure 1 Simplified PI-diagram for the chromatografic test plant.

PLC

110 Sensors

Driver Image table

110 DrIVer
software

Scan. alarm, and
control program

Product

Internal database
access software

SCripts

Software application PC

Figure 2 PLC and PC interface structure.

www.manaraa.com

Software design practice using two SCADA software packages 171

The system will be in one of four states: Manual, Running, Idle or Error.

Manual: A state where the sequences of operations are all handled manually.

Running: A normal operating state where the PCIPLC -control system is running a
number of batches. For each batch an initialisation is carried out, where the
complete batch description is downloaded from the PC to the PLC.
Operator acknowledgements of alarms.
General data acquisition, logging and plotting should be done for two
purposes, -one for on-line information on the PC-screen and one for historical
documentation and off-line analysis of data stored in a database.
It should be possible to override the downloaded sequences by manual
intervention to a certain degree, - for example to suspend normal running by
entering an idle state.

Idle: A number of security actions are taken and further sequencing is halted.

Error: A state which only the system itself can generate according to a number of
specific error conditions.

As can be seen from the foregoing description the system specification consists of a mixture
of plant specifications and plant control specifications. The plant control related specifications
are initially divided into a PLC-control specification and a SCADA- supervisory control
specification for the control software design. In carrying out this division a specific effort is
taken to clarify the interacting parts of the specification that is related to the communication
between the controlling PC and PLC. This part of the specification is a result of the decision
to divide the control task in a PLC and a PC-task. An important aspect is that any function
required at the PC level that needs to access the process parameters can only get information
or execute control insofar as these functions are supported by the PLC control software.
Although the development was done by different programmers on the PC and the PLC level, it
turned out that a close cooperation between these was necessary to allow a smooth transition
into an integrated system. The advantage of using different programmers for the two control
software tasks is that a higher degree of specialisation can be achieved. This is desirable
taking into account the very different environments of programming and corresponding
strategies that exist at the two levels. These methods and strategies will be dealt with in the
following.

3 FUNCTIONALITY OF THE SCADA SOFTWARE PACKAGES

As the abbreviation SCADA indicates, the main objective of the software packages is
~upervisory ~ontrol And .Qata Acquisition.
* Data acquisition is the ability to retrieve data from the plant floor and process this data into
a useful form. Data can also be written to the plant floor, thereby establishing the critical two­
way link that closed-loop control software require. The data transmission details of the
communication with the process hardware are handled by an I/O-driver. The I/O-driver is
selected for the hardware used in the plant, e.g. for the specific PLC used.
* Supervisory control is the ability to monitor real-time data coupled with the ability of
operators to change set points and other key values directly from the computer. This function
is typically achieved via a graphic interface which is constructed with the SCADA software
packages in relation to the structure of the plant under control.
The tasks above are usually handled by the SCADA software package's central elements
which are the graphical user interface, the database, and the I/O driver. A more detailed
description of these elements is given in the following chapter, where the usage is illustrated
by a simple example using the InTouch and Fix packages.

www.manaraa.com

172 Software Engineering for Manufacturing Systems

3.1 Other functions often found in Scada software packages

* Data management is the process where the acquired data is manipulated according to the
requests of the software applications constructed by the user. The basic functions of data
acquisition and management provide the basis for practically all the industrial automation
tasks that the SCADA software packages can perform. The absolute data integrity is therefore
an essential demand when automation is done with the help of these packages. Most of the
products have some kind of tool to assist to ensure this integrity.
* Monitoring is the ability to display real-time plant floor data to operators. Powerful numeric,
text, and graphical formats are usually available to make data more accessible.
* Alarming is the ability to recognise exceptional events and immediately report those events
to the operators via the graphical display.
* Control is the ability to automatically apply algorithms that adjust process values and
thereby maintain those values within predefined limits. Control goes one step beyond
supervisory control by removing the need for human interaction. The computer can thereby be
used to control the whole process or a part of the process to be automated.
* Data archiving is the ability to sample and store any data point in the system in data files at
operator specified rates. At any time the data can likewise be retrieved from the data files to
create trend displays of historical data. Managers and engineers can use this data to examine
the events leading up to a critical event after addressing more immediate problems. The
archived data represents a powerful tool for process correction and optimisation.
* Reporting is the possibility to access process data through industry standard data exchange
protocols such as DDE(Qynamic nata .§xchange) or ODBC SQL (Qpen nata!!ase
!.;;onnectivity ~tructured Query .Language). Operators can thereby create detailed reports with
spreadsheets, compatible with MS Excel or MS Access, that contain acquired and calculated
historical data.
* Distributed processing is the ability to create a system where the processing is distributed
over a network.
* Centralised processing is the ability to have a system that contains only one computer
(node) i.e. stand alone system
* Time-based processing
Most applications work by acquiring and calculating data at regular intervals, defined in
seconds, minutes, or hours. Most SCADA software packages can perform any combination of
time-based processing. This function allows the operator to balance the system resources
giving priority to data that needs to be acquired quickly.
* Exception-based processing
Processing that is triggered by events rather than time is known as exception-based
processing. Processing can here be triggered by data changes, unsolicited messages from the
process hardware, operator actions or other software applications. Exception-based processing
is an essential feature for achieving distributed SCADA applications that monitor a large
number of I/O devices.

4 TOOLS FOR PROGRAMMING THE SCADA APPLICATION

4.1 Introduction

During the construction of a SCADA application, the implementer encounters three different
types of programming. These programming types are found when designing the graphical user
interface, when setting up the database of the system, and when programming scripts. In the
following sections these programming types are described in relation to Fix and InTouch, with

www.manaraa.com

Software design practice using two SCADA software packages 173

some illustrative figures generated from a simple example. The example used is a 15000 litre
horizontal tank where the volume in relation to the liquid level should be calculated and
illustrated graphically. The input/output is volumellevel or vice versa. The graphical user
interface of this system is shown in figure 3.

, 5.000 1 tank

Uquid 101'91 ~)

50,00

E9aI numbel eX fills ilralriol bctaen qui! awl

Number of Irlllrs (L)

1.500,00

EBae qui! ~lI! l iI leEfun I:ldaen num ool eX leIS

Figure 3 Graphical interface for a horizontal tank. (Fix, 1994)

4.2 Graphical user interface

When constructing the graphical user interface, the SCADA packages provide some helpful
tools for designing the graphic display. The most important is a toolbox where many
possibilities for drawing and creating the computer displays, that allow the operator to interact
with the process data are found. Another useful feature is the creation of smaller elements that
are often used. These could be valves, tanks, etc. These elements are called Wizards in
InTouch and Dynamoes in Fix. When designing the graphical user interface the constructor
can re-use his set of predefined Wizards/Dynamoes and he will be asked to fill in the
properties for each element. This is a powerful tool because it is possible to create a large
library of standard elements that is very useful if there are strict demands for validation. The
toolbox from Fix can be seen in figure 4.

Figure 4 Toolbox for programming via dynamoes (Fix, 1994)

4.3 Database programming

As mentioned above, the database is one of the central parts of the SCADA packages. The
database of a SCADA package creates the connection between the process hardware via a

www.manaraa.com

174 Software Engineering for Manufacturing Systems

driver to the graphical user interface via internal database access software as shown in figure
2. The first step in creating the database for the system to be controlled is configuring the
driver that connects the database to the process hardware of the system that, as mentioned
above, is typically a PLC. The driver is usually accessed by two different approaches - poll or
event based, where Fix uses a poll-based driver and InTouch uses an event-based driver. A
poll based driver continuously updates the data points whereas an event based driver only
updates if there has been a significant change of the value in question. The implementer has to
create driver image tables or poll tables where each 110 point from the PLC that is to be used
in the database must be defined. Here the implementer must specify how often a data point is
to be updated, which type of data is used, (whether is analog, digital or a register) and the
specific address in the PLC. The drivers used by the two SCADA packages in question were
not only different concerning the database updates. The driver used by Fix was a DOS
program and the driver used by InTouch was a Windows program. As a result of this fact, Fix
had to be restarted each time changes were made in the driver in order to acknowledge the
changes, which was quite annoying. Once the driver image tables were completed the next
step was to configure the database of the SCADA package. During configuration the main
objective was to connect the driver image table to the graphical user interface. The first step
was to decide what kind of variable, called a tag, was to be used. When this decision was
made the implementer would be presented with a small window that is programmed via fill­
in-the-blanks as seen for Fix in figure 5. From here it is possible to set up the hardware
connection to the PLC, specify ranges and alarm values and so forth. When the database is
fully equipped with all the connections to the hardware, the data that it contains is ready to be
used in the graphical user interface direct or via scripts as explained in the following section.
Values of the database can also be sent from the PC to the PLC. The Fix database builder for
the example is shown in figure 6.

Description:

HardwareSpe~c~if~iC~a~ti~o~ns~============~~o~p:e:r~a;'to:r~L~i:m~it~s~========~-'
Device: ~I S=IM======l Low Value: 1..-0-.0- 0------,

Hardware Options: I High Value: 1100.00

1/0 Address: ~I 0::::::::::: > Rate Limit: I~o=.o=o======l
Signal Conditioning: I Alarms

Engineering Units 0 Enable Alarming 0 Event Msg

Low Limit: 1..-0-.0- 0------. Alarm Areas: IALL

High Limit: 1100.00
~. ======~ Security Areas

Units: I" 1: 1 NONE

I 2: INONE Initial Value: L5_O_.O_O ______ ---' .

O 3: I NONE Invert Output .

Figure 5 Fill-in-the-blanks programming (Fix).

www.manaraa.com

Software design practice using two SCADA software packages 175

- .,
"

. : . ·1·
Ilatabase f dlt alocks S ort Jl.uery Display Qptlons oriv ... Fonll Help

Database Builder - FIX
Lqvts lhh Uril:1

~- I~-I- , ... I~O'·I~·_' Ilt:llftv

~
PERCENT AO EU~"""I ... ttl4tarif' I, ... ' I~ +~ VOLUM e AO u. .. ~ the tw.k t "-'ue C · U!XI). - ...

E - . - I I

Figure 6 Database builder (Fix).

4.4 Script programming

The final step in constructing the application is to use the database tags in scripts, which are
small programs that often initiated by an operator. These programs can alternatively be started
by events taking place in the application. The scripts are used for manipulating data from the
hardware so it is possible to present these in just the right way in the graphical user interface.
The programming tools for programming the scripts are for Fix and InTouch quite different.
Fix uses a programming language, called Command Language, where most of the commands
are specific for the Fix package. The programming language used by InTouch is more similar
to standard languages like Fortran and Pascal. Another important difference is the size of the
programs. Fix only has the possibility to make scripts containing 50 program lines, where
InTouch support almost an infinite number of program lines. This makes script programming
in Fix very difficult because space is very limited. Both of the mentioned SCADA packages
have promised changes in this field, and future releases of the script language will be based on
Visual Basic. Because the Fix package uses a special set of commands it is timecconsuming
for a novice to construct perfect scripts. In figure 7a and figure 7b the scripts used in Fix and
InTouch to handle the examples above are shown to give an idea of the differences.
I DECLARE HVOLUME NUMER[C SCRIPT
2 DECLARE #TEMPVOLUME NUMER[C SCRIPT
3 DECLARE #HEIGHT NUMERIC SCRIPT
4 DECLARE HPERCENT NUMER[C SCRIPT
5 DECLARE HI NUMER[C SCRIPT
6 GETV AL F1X:VOLUME.F _CV HVOLUME
7 HTEMPVOLUME = 7500
8 HPERCENT = 50
9IFHI<=20
IO GOTO 15
I I ENDIF
I2 IF HI> 20
13 GOT029
14ENDIF
15 [F HVOLUME = HTEMPVOLUME
16 GOT029
17 ENDIF
18 [F HVOLUME > HTEMPVOLUME
19 HPERCENT =#PERCENT + 50/(2 A (HI + I))
20 #1=#1+1
21 ENDIF
22 [F #VOLUME < #TEMPVOLUME
23 #PERCENT = #PERCENT - 501 (2 A (#[+ 1))
24 #1=#[+1
25 ENDIF
26 #HEIGHT = HPERCENT • 17,5
27 HTEMPVOLUME = 2 • 6236,27531 1 ()()()()()()

• «HHEIGHT 12 - 437,5) • SQRT(-(#HEIGHT A 2)
+ 1750· #HEIGHT) - 382812,5 •
AS[N(1 - (2 • HHEIGHT) 1 1750)
+ 191406,25' 3,1425926535)

28 GOT09
29 SETV AL F1X:PERCENT.F _CV HPERCENT

Figure 7a Script example from Fix for the horizontal tank.

www.manaraa.com

176 Software Engineering for Manufacturing Systems

I Volume = VolumeWindowValue; (Volume first altered when "OK"}
2 TemporaryVolume = 7500; (First guess, tank half full}
3 TemporaryPercent = 50;
4 FOR i = 0 TO 20 (Max. 20 iterative actions}
5 IFVolume = Round(TemporaryVolume,l) TIffiN
6 EXIT FOR; {Exit if calculated volume equals the volumen given}
7 ENDIF;
8 IF Volume> TemporaryVolume THEN

(If the calculated volume i. smaller than the given volume}
9 TemporatyPercent = TemporaryPercent + SOI(2**(i+1);

(New guess i. calculated}
\0 ELSE

(If the calculated volume i. bigger than the given volume}
II TemporaryPercent = TemporaryPercent - 501(2**(i+I»;

(New gue •• is calculated}
12 ENDIF;
13 Height = TemporaryPercent * 17 .5; (Height of tank is 175Omm}
14 TemporaryVolume =

(Calculation of volume corresponding to new TemporaryPercent}
2*6236.27531l000000*«(Height)l2437.5)*Sqrt(-(Height)*(Height)+1750*(Height)
-382812.5*ArcSin(l-2*(Height)/1750)*3.1415926535/180+191406:2S*
3.1415926535);

15 NEXT;
16 Percent = Round(TemporaryPercent,I);
17 Hide "Pop-up window for volume";

Figure 7b Script example from Intouch for the horizontal tank.

4.5 Application programming practice

When programming a new application with the assistance of SCADA packages, it was
expected that the approach would vary with the amount of programming experience of the
programmer. An experienced programmer will often find the top - downlbottom - up principle
quite helpful. This method results in an approach where the total specifications for automation
of the system are generated according to the top-down principle mentioned above. Afterwards
the actual programming can begin. The code writing then follows the bottom-up principle,
where programming starts at the PLC. Once the PLC program is completed, the systems I/O
driver is configured. This is done by defining all the I/O points to be used in the application.
The next step in the process is to configure the database of the SCADA package according to
the I/O points defmed in the driver, and the needs represented by the graphical user interface.
When these tasks are completed, the graphical user interface is designed in relation to the
wishes and demands presented in the specifications. The user screens are mostly constructed
with the aim to have some kind of resemblance with the physical system to be controlled. The
final process is to connect the elements of the graphical user interface with the database
directly or via programming scripts. At this stage the dynamics of the system are made
accessible to the operator. The approach presented above is an ideal approach which for
beginners was found quite hard to follow. During the programming it was experienced that it
was often necessary to move back and forth between the levels as the experience grew. This
movement was however not felt by the programmers as a difficulty, because the path from
implementation to test was assisted greatly by the software packages. A useful approach here
was to advance the graphic presentation part of the software in order to present the planned
functionality and to use it as a basis for discussion with the users.

5 TOOLS FOR PROGRAMMING THE PLC

A number of methods for creating PLC-code were identified: Instruction List (IL), Ladder­
Diagrams (LD), Function Block Diagrams (FBD) and Sequential Function Charts. (SFC),
(IEC 1131-3). What we needed was a high level language and graphical presentation that was
easy to present and discuss with plant users. We chose the SFC method, sometimes referred to

www.manaraa.com

Software design practice using two SCADA software packages 177

as GRAFCET (B. Goran, 1991) which is a graphical method that is excellent for the
sequential part of the control, but does not describe data management aspects of the PLC
program. The PLC selected for the process was a SattControl 05-45 PLC with 65 Kbytes of
memory and could be programmed by a PC software package: DOX-5/1O. Because an old
version of the software has been written using DOX-5, this version was used. The PLC is
equipped with 64 digital I/O points, 8 analog inputs and 4 analog outputs. Even though DOX-
5 did not support GRAFCET programming, the method was used throughout to discuss
specifications with users and as a specification for the programmer. An example of a list of
sequential steps using GRAFCET is shown in figure 8.

T T

=1

to step 11

Transition conditions:
B: boolean, AlB: analog and boolean, C: counter,
=1 : no explicit condition, T: timer

=1

Figure 8 Example of a Sequential Function Chart from the test plant (GRAFCET)

The sequential function chart specifies the central part of the control software, and the other
parts are more or less derived from, or merge into, ist states. The output does not normally
change without an initial change of state and the states are the basis for forming the output. As
additional guidelines for programming, a set of company and PLC specific function blocks
and guidelines were used. The function blocks dealt with: self-locking states, sequential steps,
component controls and calculations. The guidelines for programming addressed naming
conventions, structuring of code and other hints for writing good, serviceable software code.
Despite the attempts to keep programming at a standard level this was not totally possible
with the PLC-code. Like most PLC applications, the coding was sometimes rather awkward
and vendor specific when we got beyond the basic Boolean operations programming. An
example is a case where a user demand results in a corresponding demand for flexibility of the
PLC program. In the test plant the user wanted to be able to change the set-up of input and
output tanks from one GRAFCET state to the next (see figure 1). The solutions suggested
were:

a) download a complete PLC-program containing the new input/output specification

b) download a new input/output specification for each change of state

www.manaraa.com

178 Software Engineering for Manufacturing Systems

c) download a complete input/output specification for all states

The first alternative conflicts with the desire to keep validation at a minimum, using only one
code variant. The second conflicts with the specification in saying that the PLC should be
capable of controlling the process in a stand-alone mode. The third method is the only one
acceptable. It requires however a set of register and addressing capabilities that would be easy
to handle in, for example PASCAL or C, but requires a PLC-code specialist using, e.g.
indirect addressing. The result is that a lot of vendor-specific programming tricks are required
and the programming for just this vendor product line becomes both time consuming and
costly. This again led to a company policy to limit the number of different PLC vendors in
order to keep programming and maintenance problems at a manageable level.

6 EXPERIENCES GAINED

In 12 months two beginners of both SCADA and PLC-programming and with only basic
PASCAL programming experience set up specifications for and implemented one PLC­
program and two SCADA solutions using FIX and InTouch. The specification was a renewed
specification for the complete PCIPLC-solution based in part on an existing PLC;-specification
and program. The new specification took about 6 months in close cooperation with process
and plant engineers and operating personnel. The specification process was as usual an
interactive process trying to assemble loose ends, harmonise different views and scale
ambitions. In the same period, the students became acquainted with the software products at
hand: The PLC-programming environment and the two SCADA products. After another 6
months one complete, working process control system was demonstrated and the
accompanying documentation finished. The effort is described as 50 % PLC-programming
and 50 % SCADA programming.
During implementation some minor problems with the SCADA products were found. The FIX
package did not allow for a specified automatic lock-out in the case of inactivity. Concerning
the database interface some minor problems were detected when trying to export data from
InTouch to the Microsoft database Access. Furthermore it was felt that the SCRIPT language
for FIX was less intuitive than the more general purpose SCRIPT language for InTouch.
Summarising, the SCADA packages had several ways to facilitate high level programming:
Fill-in-the-blanks, wizards-programming and clip arts for the graphics interface. However
troublesome these programming tools were felt by the programmers, there is no way they
could have made the same kind of control system without this extensive programming
support.
Moreover the features of the packages that were not tested or used presently for the process
control are still available for future extension and integration in the company .. Thus path to
"open" systems using de facto standards like Windows, DOE, NetDDE and ODBC SQL
achievable. One important aspect of programming was not carried out during the above
mentioned period - the final system validation. The validation procedures followed by the
company is regulated to a large extent by the pharmaceutical regulations. The validation
process was estimated to take an additional 3-6 months. (R. Konakovsky, 1994). The
uncertainties relating to the validation of the large software package running under Windows
further underlined the necessity for a solution where the critical parts of process control could
be run by the PLC alone.

www.manaraa.com

Software design practice using two SCADA software packages 179

7 CRITICAL ISSUES

The application of standard software speeded up the development of the application, but also
restricted the freedom and insight of the programmer. In this case, as in many real-time
control applications, it is almost impossible for the programmer to estimate the time required
in data acquisition, data management and data presentation. In this case no extreme demands
for event management and small scan-times were specified. The fastest scans were measured
in seconds and minutes. Concluding, it would be very useful to have a set of standard tests or
benchmarks for different configurations of SCADA products and PLC's. In this respect,
special attention must be given to the driver and communication hardware.

8 FUTURE ASPECTS

The software development described leads to the conclusion that considerable development
time can be saved by integration of the two software tasks for the PLC and the SCADA
application. The integration is illustrated in figure 9. Here the PC and the PLC melt into a
"SoftPLC". The advantage is that the construction of the PLC-code can automatically build
the database for the SCADA application. Furthermore, the interaction between the PLC and
SCADA functions are optimised, not dependent on different drivers. Another feature
illustrated by figure 9 is the possible change of the process instrumentation interface, which
can be shifted towards a fieldbus solution, where all sensor signals are sent via the network in
digital form.

specifi­
cations

present

sensors

future

SoftPLC

sensors

Figure 9 Future developments related to PC and PLC-programming.

remote
or

local

9 APPLICATION TO DISCRETE PARTS MANUFACTURING (DPM)

The software packages for SCADA applications are attractive for DPM because they represent
a large set of features also requested for discrete parts manufacturing. Additionally the
packages are in widespread use for control tasks in the process oriented industries.

www.manaraa.com

180 Software Engineering for Manufacturing Systems

Two specific issues come up in this regard. One is the question of communication with CNCs,
AGVs and Robots. A list of general communication requirements for this area is shown in
table 1. The SCADA products can probably handle the communication requirements via
device specific drivers written by experienced C-Ianguage programmers for the non standard
manufacturing equipment at hand. The main issue is whether the SCADA-products can
support the requirements for the manufacturing of discrete parts. In DPM there is a need, not
only to monitor and control the state of the plant, but additionally to keep track of each
individual part. This requires the SCADA product to be able to handle several plans
simultaneously, one for each part. These, and other specific requirements that could make
SCADA products much more interesting for flexible DPM are a topic for future
investigations.

1) upload and download of programs to a device
2) dynamic downloading
3) notify supervisors
4) start and stop of programs
5) ask for status
6) change data on a device while executing a program
7) control auxiliary equipment

Table 1: Communication functionality for DPM -equipment (G.K. Christensen,1992)

10 REFERENCES

Fix Dmacs ver.5.0, System Setup, System Development, Advanced Tools and Display
Development, Intellution, Inc. 1992-1994.

InTouch, ver.5.0 -manuals, Wonderware, Inc. 1995

MainStream- Application Integration Platform for Open Factory Systems, ITP Enterprice
Software Inc, Cambridge, Ma, 1989.

SattCon 05 Slimline (V3) - Installation and maintenance, Alfa Laval Automation AlS, may
1994, Dok. nr. 493-0573-01 version 1.1.

DOX-5 Users manual, SattControl, AB Malmo, november 1990., Art nr. 493-0235-11.

B.Goran og G.Sandberg: "Funktionsdiagram - et kursushrefte til beskrivelse af SS IEC 848, S
-konsult AB, ISBN 91-87-18220-3.

J.H. Christensen: "Function Block Standardization - Liason Report, ISOIlEC, Presented to
ISO TC184 Meeting, Torino, Italy, 17/5 1995.

IEC 1131-3 (PLC Languages) IEC 1992.

G. K. Christensen and C. N\'ikleby: "Quality Interfaces In The 90ties Using MMS", Systec,
MAPIMMS workshop 3,1992, Munich, Germany.

Rudolf Kanakovsky and Peter Woitzik: "Automatisierung der Typprufung von Software fur
Prozessleitsysteme", Automatisierungstechnische Praxis 36 (1994). 10,12-21

www.manaraa.com

15

GENIUS: A Generator
for Graphical User Interfaces

Univ.-Prof Dr.-Ing. Prof e. h. Dr. h. c. Hans-Jorg Bullinger
Dr.-Ing. Dipl.-Math. Klaus-Peter Fiihnrich
Dr.-Ing. Dipl.-Inform. Anette Weisbecker
Fraunhofer-Institutfiir Arbeitswirtschaft und Organisation (lAO)
Nobelstr. 12c, D-70569 Stuttgart, Germany, +49711 9702320, +49
711 9702300, Anette. Weisbecker@iaofhg.de

Abstract
GENIUS (GENerator for user Interfaces Using Software ergonomic rules) is a system that
generates ergonomically designed graphical user interfaces from extended data models.
GENIUS is based on a methodology to develop graphical user interfaces in a stepwise proce­
dure starting from standard data models of a specific application system (e.g. production plan­
ning and control systems). The GENIUS system transforms these models in a series of con­
secutive operations into an operational graphical user interface (GUI).

The methodology introduces the definition of views for the specification of the data and
functions required by the users. In addition, the derivation of the dialogue structure from the
data model is presented. Based on the defined views, the automatic generation of the user
interface is carried out by a rule-based system using explicit design rules derived from
existing guidelines. Output is generated for an existing user interface management system.
The approach supports rapid prototyping while using the advantages of standard software
engineering methods and ensures the integration of these methods with user interface design.

GENIUS has been tested for the development of a series of graphical user interfaces for pro­
duction planning and control systems. It has been used in typical migration situations from
alphanumerical systems to be migrated into client/server solutions with graphical user
interfaces as well as for the development of new systems for different platforms.

Keywords
Automatic User Interface Generation, Data Models, User Interface Management Systems,
Production Planning and Control System

www.manaraa.com

182 Software Engineering for Manufacturing Systems

1 INTRODUCTION

Data and information have become important economic factors and major milestones for
industry. Therefore, systems are required within a company for integrated and constant
information processing. These systems must support the fulfilment of competitive objectives
such as cost reduction, processing time minimization and improvement of qUality. This is
especially true for customer-oriented information systems within a company which are
indispensable for an efficient processing of customer orders.

There is evidence that the functionality of information systems within a company is not fully
used (VDMA, 1992). The provided information appears as a huge amount of data the users
cannot cope with. Nonetheless it is essential for the successful use of information systems,
that the required information is represented in a comprehensive way to the user. This means
that the application of software ergonomic design guidelines is imperative during software
development. At present the development of software ergonomically designed user interfaces
is still time-consuming and often very difficult for the system developers, because they lack
the appropriate knowledge (Huttner et al., 1992).

Although a greater number of user interface development tools is available, it is difficult to
follow existing user interface design guidelines and style guides (Tetzlaff, Schwartz, 1991),
because the tools do not provide support for software ergonomic guidelines. In addition, user
interface tools cannot make use of the models developed with general software engineering
methods and tools in the early phases of the design cycle, which specifies the non-interactive
part of an application. The integration of application development and user interface design
which has been often demanded but is still missing in practice, leads to additional effort and
potential inconsistencies when moving from requirements analysis to user interface design
(Foley, 1991). It is therefore important to use analysis results such as the data model as input
for user interface development tools.

The work described in this paper addresses the problems mentioned above. It shows a
method and the supporting tool environment GENIUS (GENerator for user Interfaces Using
Software ergonomic rules) for the automatic generation of user interfaces from extended data
models (Weisbecker, 1995) and the use of GENIUS for the development of a graphical user
interface for a production planning and control system. GENIUS generates user interfaces ac­
cording to human factor guidelines and guarantees the integration of software engineering and
user interface design by using the application data model as a basis for application develop­
ment as well as for user interface design.

The development of graphical user interfaces with GENIUS is carried out in three main
steps (Figure 1), which are described in the following chapters. The first step is interactively
performed by the software developer and the other two automatically by GENIUS.

• Specification
In the first step the data and functions necessary for a task are specified. This is carried
out by defining the views according to the user's task and on the basis of the data model
in the form of an entity relationship model.

• Generation
The information specified in the first step is used for deriving the dialogue structure. In
the second step it serves as the basis for generating user interfaces while applying
software ergonomic rules.

www.manaraa.com

GENIUS: a generator for graphical user interfaces 183

• Implementation
In the third and last step the generated user interface description is transformed into the
specification of a user interface management system (VIMS), which is then responsible
for the implementation of the user interface. This last step permits the use of different
user interface tools together in combination with GENIUS.

object. and their .. !aUonahl.,. from tho .ppllc:aUon

Specification
~f=:=----, --:-:--:--::-----:-----, .--------- r::::-:-----"'-------,

InlormoUon lor c:anylng out .. algn ... n! 01 func1ions Ind
• Iosk or aubtosk vlew10

Generation
• IntoncUon objlcb
• .. iI<:Uon ",IH
"ayout ",let

Implementation

• us. of dllle ... n! UIMS
• various plotfo"""

Figure 1 Overview on GENIUS environment. Views are defined based on the data model. A
rule-based component generates the user interface presentation and the dialogue structure ac­
cording to the view definitions. As a target system, an existing UIMS is used.

2 RELATED WORK

A number of research systems are documented in the literature that automatically generate the
user interface from higher level specifications. Jade (Myers, vander Zanden, 1990) and ITS
(Wiecha et a1., 1990) are generating presentational designs from frame-like dialogue specifica­
tions. Within the VofA* (Singh, Green, 1991) the component Chisel (Singh, Green, 1989) is
used to generate presentation and dialogue of application commands by means of design rules
with regard to user's preferences and given device characteristics. Mickey (Olsen, 1989) uses
the declarative constructs of the programming language Pascal for the description and
generation of Macintosh user interfaces. VIDE (Foley et al. 1991), in combination with DON
(Foley, Kim, 1990) uses a specification consisting of objects, attributes, attribute types,
actions, parameters, preconditions and post conditions. Each of these systems introduces its
own notation for the higher level user interface specification. However, the use of widely
known notations is important for the acceptance of tools by system developers.

www.manaraa.com

184 Software Engineering for Manufacturing Systems

HIGGENS (Hudson, King, 1987) is the first UIMS which incorporates data models and uses
views to represent an abstract fonn of the display. In contrast to the GENIUS approach and
most of the systems mentioned above, HIGGENS does not incorporate rules for the generation
of the physical user interface. Thus, it offers less flexibility and power with respect to the
selection and layout of interaction techniques.

The system described by de Baar, Foley and Mullet (1992) generates dialogue boxes and
menus from enhanced data models. With this approach, descriptions from data modelling can
be reused for the user interface specification, and double effort and consistency problems are
avoided.

In the approach of Petoud and Pigneur (1990), the entity relationship models are used for
user interface generation. The dynamics are textually specified and can be visualized by a
precedence graph. The graph, however, can neither be modified nor substructured. Therefore,
the system is probably not suitable for large applications.

As a whole, existing systems for the automatic generation of user interfaces either lack a
proper integration into general software engineering methods, or sufficient support for user
interface design guidelines.

3 USER INTERFACE SPECIFICATION BY VIEW DEFINITION

3.1 Deriving User Interface Presentation from Data Models

The data model in the fonn of an entity relationship model is the starting point for the specifi­
cation of the user interface with GENIUS. The entity relationship model (Chen, 1976) is a
well established conceptual data model. It is used in most of today's software-engineering
methods (Y ourdon, 1989) and is also the most frequently used modelling technique in indus­
try (Bittner et al., 1992). In addition, it is supported by a great number of computer-aided
software engineering (CASE) tools.

The entity relationship model shows the elements of the application area and their relations;
nonetheless, it does not describe the data the user need for perfonning specific tasks. There­
fore so-called views are defined. A view consists of a subset of entities, relationships, and at­
tributes of the overall data model. Additionally functions are assigned to a view, thus a view
comprises the whole infonnation to perfonn a specific user task. Within these functions two
different types are distinguished: data manipulation functions and navigation functions. Data
manipulation functions can be applied to data elements in the view. Navigation functions
detennine the dialogue structure by calling other views. They are used to define the dynamic
behaviour of the user interface.

In order to enable an easy and efficient view definition, a number of extensions have been
added to the entity relationship model. For specifying logical groups of attributes, complex at­
tributes are introduced. The grouping of infonnation is used in the user interface generation
process for visualizing groups of related data. For reducing the complexity of the graphical
representation of entity relationship diagrams, a set of entities and relationships can be re­
placed by a single symbol and edited separately.

Within the GENIUS tool environment, the definition of views are defined by a direct
manipulation editor. The application developer interactively selects elements from the entity
relationship diagram. Thus, no programming skills are required for the definition of the views,

www.manaraa.com

GENIUS: a generator for graphical user interfaces 185

and it is easy to involve non-programmers into the process e.g. application experts and inter­
face designers.

Because the entire infonnation needed for the generation of user interface windows from
views cannot be expressed in a graphical representation, it is necessary to supply additional
textual descriptions. These are provided in so-called property sheets. Property sheets can be
popped up during the definition of the views and edited directly. They consist of a definition
of each element which in most cases is available from the data dictionary, the assignment of
the functions to the view and the inclusion of task oriented properties which are used to map
the application elements on appropriate interaction objects in the automatic generation proc­
ess.

According to the elements in a view and their structure, two different types of views are dis­
tinguished:

• Aggregation View
An aggregation view shows a collection of different elements e.g. entities, relationships
and attributes. According to the presentation of the aggregation view two different fonns
have been characterized:

- Reference Presentation
A reference presentation shows the aggregation as a whole. It may also be called a con­
tainer. Usually, entity types are represented by containers. Containers are the typical
elements for the first dialogue steps (e.g. in Figure 5 parts of a production planning and
control system).

- Set Presentation
In a set presentation each element of an aggregation is shown. Depending on the num­
ber and structure of the elements, lists, sets or other presentation structures such as
trees are used. The elements shown in the set presentation give references to the detail
view of each element.

• Detail View
A detail view shows the single attributes of entities. Either all or only some attributes of
one entity may be shown, but also attributes of different entities which are needed in re­
gard to a specific task (Figure 7).

The structures in the data model are preserved in the views. They are used to detennine the
presentation of the attributes and to derive the dialogue structure.

Within the automatic generation of the user interface, the view elements are mapped to ap­
propriate interaction objects by means of selection rules which take into consideration the
characteristics of the attribute such as type, range and number of values. The relationships be­
tween the entities also influence the presentation and structuring ofthe view elements. For ex­
ample, the attributes belonging to the same entity or relation are implicitly grouped in order to
reflect their logical connection to the user. In addition, the cardinality of relationships between
the entities influences the presentation of the attributes. Thus in the case of a l:n or n:m rela­
tionship, an aggregated view is used to show the different instances.

www.manaraa.com

186 Software Engineering for Manufacturing Systems

3.2 Deriving Dialogue Structures from Views

The structure of the views does not only serve for determining the presentation, it also sup­
ports the automatic derivation of the dialogue structure, because both object-oriented user in­
terface and data model are structured according to the data objects. Therefore, the data model
structure can be transferred to the dialogue structure for an object-oriented user interface.

Dialogue Ently Ij ... Hi1
• AppIIca\lOllS

• Func1ions I w~~ l g
• Da'. f-t S.lecllon ,. Ii ,

!
• De.ai view

_ .. -· c,;,eria lor !he B - I"

I~ 1 'I.:dl
seIecIion 01 an

S.1ec1iOn objecIlnSlance • • • a Q

• AggregalOln ~I c D a 1= d
view I~ l • alilOS'an09S

01 an 0IljecI ===== S.lecllon Ii"" 1'2 1 • Agg<ega •• "'-
· displaylng,he II~

IJ •
H~I ~

seJecbon resuh
Detail ===c::J= • Delail view

!! I
· Inlormalion to

an instance or I
an objed !

====
Figure 2 Schematic dialogue structure for object-oriented user interface.

The dialogue structure of an object-oriented user interface consists of three main parts. The
first part is the application entry, which shows all relevant objects. In the second part a selec­
tion dialogue is provided in order to identify the desired object. The last part shows detailed
information on the desired object. Thus, in a typical object-oriented dialogue, navigation to
the desired object must be carried out first in order to perform a specific task in the second
step.

The starting point for the definition of such a dialogue sequence is the coarse data model
which contains merely entities and relationships (Figure 4). Based on this model, container
views can be defined in order to provide a dialogue entry (Figure 5). A container view consists
of those entity types which do not result from normalization.

After selecting a container object, a possibility for further selection of the desired object in­
stance must be provided. Depending on the number of instances, three different ways can be
used. If the number of instances is small, icons can be used to show the single instances of the
object. For a medium-sized number of instance, a list is appropriate. A search form with
criteria for further specification is provided if a large number of instances is available (Figure
7). The search process results in a list showing the objects which fulfil the search criteria. The
selection of an entry in the list will lead to the details of the desired object.

The aggregation and detail views needed for such dialogue sequences can be defined inter­
actively on the basis of the data model; to some degree, they can be automatically generated.
In the generation process a window will be assigned to the container view and the entity types

www.manaraa.com

GENIUS: a generator for graphical user interfaces 187

will be represented by icons. Depending on the number of instances for each entity type an
aggregate view will be generated or a detail view for a search form is added. If the aggregate
view or the detail view for a search form is generated automatically, either the key attributes
of the entity will be shown or the attributes which are explicitly marked as identifier for
selection will be used.

4 GENERATING THE USER INTERFACE

The defined views form a logical description of the application user interface. This description
is used as input for a rule-based system carrying out the generation process. The generation is
performed in three steps (Figure 3). In the first step appropriate interaction objects are chosen
for the presentation of the data and functions specified in the views. In the second step the
parameters (e.g. colour, position, size) for these interaction objects are determined. In the third
step the layout is done by arranging the interaction objects.

Selection of abotract I_n Objects

.view window

_function ... menu
operation selection

_data element constant fiekl, data field, group,
single and muhiple selection, list, table ...

V
Parameter Detenninatlon for Interaction Objects

.data information • interaction between
- name, length, format, interaction obejcts

values, defaults - inside a group
- over groups

.default values - position
- user preference - alignment
- environment
-style

V
Arrangement of Interaction Objects - Window Layout

• inside a group • priority
• over groups _application semantic

• Gestalt laws

Figure 3 Main generation steps in GENIUS.

4.1 Mapping View Elements on Abstract Interaction Objects

For the first generation step abstract interaction objects have been introduced. These interac­
tion objects are called abstract because they are independent of their physical implementation,
e.g. as MS-Windows, OSF/Motif or OS/2 Presentation Manager widgets. Thereby, flexibility
with regard to the target environment is reached and the portability of the application is sup­
ported. The definition of the abstract interaction objects is based on an examination of
available interaction objects from different style guides (OSF, 1994; IBM, 1992; Sun, 1990;
Microsoft, 1992). Standard interaction objects defined for graphical user interfaces are win­
dows, dialogue boxes, menus, entry fields, constant fields, exclusive choices, non-exclusive

www.manaraa.com

188 Software Engineering for Manufacturing Systems

choices, operation choices, lists, and scroll bars. They are called abstract because they are in­
dependent of their physical implementation, e.g. as OSP/Motif or Open Look widgets.

The mapping of the defined views, functions and attributes on the appropriate abstract
interaction objects is carried out by selection rules.

These rules are derived from existing guidelines and style guides. Most of the rules concern­
ing formats and arrangement of data fields and field prompts stem from Smith and Mosier
(1986). Rules for interaction object selection and layout have been extracted from the CUA
(IDM, 1992), OSP/Motif (OSP, 1994) and Open Look (Sun, 1990) style guides with regard to
national and international standards ISO (1994) and DIN (1988).

4.2 Parameter Determination

The second generation step is used to determine the attribute values for the selected abstract
interaction objects. Attributes which only depend on the contents of the application (i.e. text
labels, field length, format and default values) are copied from the property sheets. A second
type of attributes is obtained by the default values which exist for each abstract interaction ob­
ject type. Default values can be specified by the users of GENIUS in order to define their own
style. The third type of attributes, mainly geometric and layout information, depends on other
interdependent interaction objects. In this step, the size of each object and the relative position
of the objects inside a group are calculated.

4.3 Arrangement of Interaction Objects

The layout is determined in the third and last step of the generation. Here, the arrangement
within complex elements such as groups is determined first. Afterwards the remaining ele­
ments are arranged on the available screen space according to their priority or the given se­
quence.
The layout is carried out by application of layout rules. These layout rules are defined with re­
gard to the application-specific structure of the data and the laws of perception and cognition
for the human visual system such as the law of proximity, similarity, consistency, continuity
and symmetry.

4.4 Transforming the Generated User Interface Description into a UIMS
Specification

The generation process renders an independent user interface description which is transformed
into a specification interpreted by the underlying user interface management system (UIMS).
This transformation step enables the use of various user interface management systems in
combination with GENIUS and allows to support different environments.

www.manaraa.com

GENIUS: a generator for graphical user interfaces

5 GENERATION OF A USER INTERFACE FOR A PRODUCTION
PLANNING AND CONTROL SYSTEM

189

During the last few years, computer supported systems have been increasingly used for
production planning and control. In the beginning, production planning and control systems
were limited to mainframes and midrange computers. Therefore these systems have been
beyond the means of small and medium sized enterprises. In the last years the situation has
changed completely because of the dissemination of powerful personal computers and Unix
workstations. As a consequence, implementors of production planning and control systems
have been forced to transfer their systems to new hardware platforms and operating systems.
The widespread use of window systems on these platforms such as the X Windows System for
Unix, Presentation Manager for OS/2 or MS-Windows for DOS leads not only to the transfer
of the systems onto new platforms, but also to the creation of graphical user interfaces. Most
of the implementors have had to migrate the alphanumerical interfaces of their systems to
graphical user interfaces. AS/400 applications for instance are provided with an OS/2 front­
end with Presentation Manager, MS-DOS applications receive a Windows user interface and
HP 3000 or VMS applications are transferred to Unix and receive a OSF/Motif interface. This
migration does not only imply the new layout of old screens in form of windows and the use
of graphical user interface elements, but also the complete redesign of the dialogue. This
redesign makes it possible to consider software ergonomic design guidelines and. thus to
ensure more efficient operation sequences. For the implementor of production planning and
control systems the following challenges arise:

• Building up knowledge for the design and implementation of graphical user interfaces.
• High expenditure of work for the creation of graphical user interfaces.
• Short development cycles in order to bring out early the new product.
• New design of the dialogue.
• Design of graphical user interface.
• Consideration of software ergonomic guidelines and style guides.

This background given, GENIUS has been used in different projects for creating graphical
user interfaces for operational information systems. On the one hand projects have been
concerned with developing new production planning and control systems for Unix platforms
under OSF/Motif; other projects deal with the migration of MS-DOS applications to MS­
Windows.

By the migration of alphanumerical interfaces to graphical ones the first design could be re­
ceived very quickly when using GENIUS. The automatic generation produces a first layout of
windows and of the dialogue while considering basic software ergonomic design guidelines.
As a starting point the data model have been used. The migration made it possible to refer to
an existing data model or to derive the data model from the existing system. An existing data
model is referred to when the systems uses a relational data base management system.

Central to the design of new systems is the determination of the requirements for system de­
sign. In these cases, GENIUS was used to generate prototypes. These prototypes served as the
basis for discussions between users, customers and developers. The results received from the
evaluation of the prototypes have been used to complete the data model. The developed data
model and the determined functions have been used for generating a first sketch of the final
user interface.

www.manaraa.com

190 Software Engineering for Manufacturing Systems

In the following sections the individual steps for generating a graphical user interface for a
small, customer-oriented part of a production planning and control system will be shown .

5.1 Definition and Generation of the System Entry

The data and their relationships are described in an entity relationship model. This model
forms the conceptual data model for the application. For definition the system entry, a coarse,
not normalized data model without attributes is used. With a direct manipulation editor the
elements for the system entry are selected.
The generated window for the system entry shows the basic customer-oriented areas of a
production planning and control system (Figure 5). This comprises the components customer,
orders, articles, workstations and resources as well as disposition, purchase, sales, store and
manufacturing.

-

Figure 4 Coarse data model for a production planning and control system in form of an entity
relationship model.

www.manaraa.com

GENIUS: a generator for graphical user interfaces 191

..
File Contlgu on Help

~1i!]~oo ~.
~=~ ~E~ ~ [!J

Rtsourcl't: WottstaUons

Figure 5 Generated window of the system entry.

5.2 Definition and Generation of Selection Windows

In order to provide fast access to the data, two different access paths are provided. Depending
on the number of data records which are available for an object a list or a selection window is
generated.
If only a few data records are available for an object, the complete data will be shown in a

list. It is possible to manipulate the data shown in the list. Therefore appropriate functions are
defined and presented in a menu bar.

For many data records the list will not be clear. In this case the data elements which can be
used to identify the desired data are shown in a dialogue box (Figure 6). The functions which
are defined for the selection and shown in the dialogue box as push buttons are select, reset,
cancel and help. The results of the selection process are presented in a list which the same
structure as the selection list for few data records.

www.manaraa.com

192 Software Engineering for Manufacturing Systems

47123

-"'-Idl"'_

-

{)nt(y- nm-.e:

Du l' '*"U Oot.u:

Ofr.,.~:

::wmcripttun tuot.r: 145123

Dull\Mf1l"""': [44123
r-----"------, ""I _: L.;,;;81 .. 2;;:'\..!:>.. ____ -'

c..:.1

Figure 6 View definition for a selection and the generated window.

www.manaraa.com

GENIUS: a generator for graphical user interfaces 193

5.3 Definition and Generation of a Detail Window

In order to manipulate single data elements of a specific object, a detailed view is defined and
the appropriate functions are assigned. Figure 7 shows the defined view for an order and the
order positions as well as the generated window.

"'- 1 - I---,

I
~! I

......
[)ellv-tryD.t .. :

[rin.Oa:

I ""]

~
---, ==-=:.J

'- J

c=J
~

Figure 7 View definition of an order and the generated window.

-

,_ow
-----.J
----.J
~

www.manaraa.com

194 Software Engineering for Manufacturing Systems

6 CONCLUSION

If compared to the traditional realisation of graphical user interfaces with user interface man­
agement systems, the automatic generation from the data model significantly reduces the
effort for application development. In addition, the generation guarantees consistency of the
user interface within an application and across different applications.

The automatic generation of user interfaces from data models is not limited to the
presentation of information in single windows. It also produces entire dialogue sequences for
data-oriented applications. This reduces the effort and simplifies the design of user interfaces.
Moreover, such dialogue sequences support the standardization of the dynamic part of the user
interface which is not yet covered by existing style guides nor by user interface tools.

With regard to the dissemination of object oriented concepts in the industrial area during the
last few years, the data model which is used as a starting point for the generation will be re­
placed by an object model. In contrast to the data model, an object model has the advantage,
that it treats data and functions as a whole which simplifies the assignment of functions to
views.

GENIUS provides an integration of user interface development with general software engi­
neering methods. In the early development phases, the automatically generated versions of the
user interface support the combination of traditional software engineering methods with proto­
typing. Such an integration was already demanded by Floyd (1988) and is now widely used in
industrial software development projects (Kieback et al., 1992). The automatic generation
does not only support the easy and fast production of prototypes but also provides the direct
relationship between prototype and specification. The prototypes are the basis for an early
design evaluation by the user. This evaluation can provide essential feedback for the
specification of the entire software system, and can contribute to ensure the correct realization
of the user requirements.

7 REFERENCES

Bittner, U.; Hesse, W.; Schnath, J. (1992) Untersuchungen zum Methodeneinsatz in Software­
Entwicklungsprojekten. Softwaretechnik-Trends, Band 12, Heft 3, August 1992, 48-60.

Chen, P. (1976) The Entity-Relationship Model - Toward a Unified View of Data. ACM
Transactions on Database Systems, Vol. 1, No.1, 1976,9-36.

De Baar, DJ.M.J., Foley, J., Mullet, K.E. (1992) Coupling Application Design and User
Interface Design, in Proceedings of Human Factors in Computing Systems, CHI '92, May
1992, ACM, New York, 259-266.

DIN-Norm 66234 (1988) Teil 1-9, Bildschirmarbeitspliitze, NormenausschuB Informations­
verarbeitungssysteme im DIN. Beuth Verlag, Berlin.

Floyd, Chr. (1984) A Systematic Look at Prototyping, in Approaches to Prototyping (ed.
Budde, R.; Kulenkamp, K.; Mathiassen, L.; Ziillighoven, H.), Springer, Heidelberg.

Foley; J. D. (1991) User Interface Software Tools, in Telekommunikation und multimediale
Anwendungen der Informatik (ed. Encarnacao, J.), GI-21. Jahrestagung, Darmstadt,
Springer, Heidelberg.

www.manaraa.com

GENIUS: a generator for graphical user interfaces 195

Foley, J. D.; Kim, W. C.; Kovacevic, S.; Murray, K. (1991) UIDE - An intelligent User Inter­
face Design Environment, in Intelligent User Interfaces (ed. Sullivan, J. W.; Tyler, S.
W.), Addison Wesley, Reading, Massachusetts, 339-384.

Foley, J. D.; Kim, W. C. (1990) DON: User Interface Presentation Design Assistant, in Pro­
ceedings of the ACM SIGGRAPH on User Interfaces Software and Technology, UIST
'90, October 1990, ACM, New York,10-20.

Hudson, S. E.; King, R. (1986) A Generator of Direct Manipulation Office Systems. ACM
Transactions on Office Information Systems 4 (2), 132-163.

Huttner, J.; Wandke, H.; Beimel, J. (1992) What do system designer know about software er­
gonomics and how to improve their knowledge?, in WWDU '92 (Work With Display
Units), (ed. Luczak, H.; C;akir, A. E.; C;akir, G.), Conference Proceedings, Berlin, E18-
E19.

mM Corporation (1992) Object-Oriented Interface Design: mM Common User Access
Guidelines. Que Corporation, Carmel, IN.

ISO (1994) ISO/WD 9241 Ergonomic requirements for office work with visual display termi­
nals (VDTs), Draft. International Standard Organization.

Kieback, A.; Lichter, H.; Schneider-Hufschmidt, M.; Ziillighoven, H. (1992) Prototyping in
industrial software projects: Experiences and assessment. Information Technology &
People, Vol. 6, No. 2+3, December 1992, 109-143.

Microsoft Corporation (1992) The Windows Interface - An Application Design Guide. Micro­
soft Press, Redmond.

Myers, B.; vander Zanden, B. (1990) Automatic, Look-and-Feel Independent Dialog Creation
for Graphical User Interfaces, in Proceedings of Human Factors in Computing Systems,
CHI '90, April 1990, ACM, New York, 27-34.

Olsen, D. R. (1989) A Programming Language Basis for User Interface Management, in Pro­
ceedings of Human Factors in Computing Systems, CHI '89, April 1989, ACM, New
York,171-176.

Open Software Foundation (OSP) (1994) OSF/Motif Style Guide, Revision 2.0. Prentice Hall,
Englewood Cliffs, N. J.

Petoud, I., Pigneur, Y. (1990) An Automatic and Visual Approach for User Interface Design,
in Proceedings of the IFIP TC 21WG 2.7 Working Conference on Engineering for
Human-Computer Interaction (ed. Cockton, G.), North-Holland, Amsterdam.

Singh, G.; Green, M. (1989) Chisel: A system for Creating Highly Interactive Screen Layouts,
in Proceedings of the ACM SIGGRAPH Symposium on User Interface Software and
Technology, UIST '89, November 1989, ACM, New York, 86-94.

Singh, G.; Green, M. (1991) Automating the Lexical and Syntactic Design of Graphical User
Interfaces: The UofA* UIMS. ACM Transactions on Graphics, Vol. 10, No.3, July
1991,213-254.

Smith, S. L.; Mosier, J. N. (1986) Guidelines for Designing User Interface Software. Mitre
Corporation.

Sun Microsystems (1990) Open Look - Graphical User Interface Application Style Guidelines.
Addison-Wesley, Reading, Massachusetts.

Tetzlaff, L.; Schwarz, D. R. (1991) The Use of Guidelines in Interface Design, in Proceedings
of Human Factors in Computing Systems, CHI '91, April 1991, ACM, New York, 329-
333.

www.manaraa.com

196 Software Engineering for Manufacturing Systems

VOMA (1992) Markt fUr Infonnationstechnik in der Fertigung wlichst weiter. Computerwo­
che Nr. 41,09.10.1992.

Weisbecker, A. (1995) A method for the automatic generation of software ergonomic
designed user interfaces. Ph.D. Thesis, University of Stuttgart. Springer, Berlin, Heidel­
berg (in German).

Wiecha, C.; Bennett, W.; Boies, S., Gould, J.; Greene, S. (1990) ITS: A Tool for Rapidly
Developing Interactive Applications. ACM Transactions on Infonnation Systems, Vol. 8,
No.3, July 1990,204-236.

Yourdon, E. (1989). Modem Structured Analysis. Prentice Hall, Englewood Cliffs, N. J.

8 BIOGRAPHY

Prof. Dr.-Ing. habn. Prof. e.h. Dr. h. c. Hans-J6rg Bullinger

Dr. Bullinger is the head of the Institute for Human Factors and Technology Management
(1AT) and the Fraunhofer-Institute for Industrial Engineering (lAO).

In 1978, Dr. Bullinger received the Kienzle-Medal as an award from the University Group
of Manufacturing. In 1982 the gold Ring-of-Honour was awarded by the German Society of
Engineers (VOl). In 1986 he received the Distinguished Foreign Colleague award from the
Human Factor Society. In 1991 he became Honorary Doctor at the University of Novi Sad and
Honorary Professor at the University of Science and Technology of China in Hefei. Since
1993 he has been a member of the World Academy of Productivity Science and in 1994 he
became an elected honorary member of the Rumanian Society of Mechanical Engineers. In
1995 he received the Arthur Burckhardt Award.

Dr.-Ing. Dipl.-Matb. Klaus-Peter Fibnricb

Dr.-Ing. Klaus-Peter Fiihnrich is currently serving Fraunhofer Society Institute for Industrial
Engineering as Deputy Head of Division Information Management. He gained fIrst education
in mathematics and computer science. He received a PhD in engineering and is a lecturer at
University of Stuttgart.
Currently he is Head of the Departments for Software Management and for Information
Systems. His areas of work are Software Management and Software Engineering, Service
Engineering, Quality Management and Organisation on Human Factors. He specializes in sev­
eral branches of industry like machine tool industry, car industry, service industries and media
industries.

Dr.-Ing. Dipl.-Inform. Anette Weisbecker

Dr.-Ing. Anette Weisbecker studied computer science at the Technical University of
Darmstadt and received a PhD in Manufacturing at the University of Stuttgart. She works at
the Fraunhofer-Institute for Industrial Engineering (lAO) and currently heads the Group for
Software Production. Her area of work is Software Engineering, User Interface Design,
Human Factors, with main emphasis on the integration of software engineering methods and
user interface design techniques.

www.manaraa.com

INDEX OF CONTRIBUTORS

Astinov, ll. 38 Guinand, P. 84 Soenen, R. 58

Basse, K.P. 168 Jaeueci, G. 153 Spath, D. 84
Bi, Z. 123 Jarvis, D. 14 Storr, A. 1
Billington, 1. 46 Jarvis, J. 14

Succi, G. 153
Brandl, T. 95 Koch, Th. 107
Brendel, W. 71

Langen, R. 107
Teggar, M. 58

Bullinger, H.-1. 181 Lanza, M. 84 Todorov, N. 38

Christensen, G.K. 168 Lo Surdo, A. 153 Uhl, J. 139
Deng, Z. 123 Lutz, R. 95

Uhrik, C. 153
Doublait, S. 153 Mambella, E. 153
Driller, 1. 139 Osmers, U. 84 Valerio, A. 153

Fiihnrich, K.-P. 181 Otto, H.-P. 27 Week, M. 107
Farrington, M. 46 Rath, G. 27 Weisbecker, A. 181
Frederiksen, P.K. 168 Reiehenbiieher, 1. 95
Friedrich, 1. 107 Ronehetti, M. 153 Zhu, Y. 123

www.manaraa.com

KEYWORD INDEX

Automatic user interface generation 181

CASE (computer-aided software
engineering) tools I

CASE tool 71,95, 107
Cell control 107
Class library 107
Coloured Petri nets 46
Combined simulation 58
Computer Aided Manufacturing (CAM)

84
Continuous system simulation 58
Control engineering 123
Control software 95
Control technology 38

Data models 181
Decision making 38
Design patterns 107
Development environment 107
Discrete event manufacturing 46
Discrete event simulation 58

Flexible manufacturing system
(FMS) 123

IECI131-3 71

Maintenance 14
Master control system 139
Messages 27
MMS 107
Model-based diagnosis 14
Modelling 38, 46
Modelling and simulation 58

Object-orientation 139
Open architecture 107
OPENDK 71
OSI 107

Petri net (PN) 107, 123
Production planning and control system

181
Programmable logic controllers (PLC)

14,46,71,84
Programming 71

Reusability 139
Reusable software artifact library 153
Reuse 95
Reuse support organization 153

Shop floor control 107
Simulation 38
Software design 168
Software design methods 95
Software engineering 107, 123
Software engineering procedures and

methods 1
Software reuse 153
Software technology 139
Software testing 123
Standard SCADA software 168
State diagrams 27
Status 27
Structured macro Petri net (SMPN) 123
Structures and demands of control

technology 1
Supervisory control 168
System modelling 123

Templates 27

User interface management systems 181

Views 27
Virtual reality (VR) 84

Workframe 107

